cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008835 Largest 4th power dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 81
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [ seq( expand(nthpow(i,4)),i=1..200) ];
  • Mathematica
    Max@ Select[Divisors@ #, IntegerQ@ Power[#, 1/4] &] & /@ Range@ 81 (* Michael De Vlieger, Mar 18 2015 *)
    f[p_, e_] := p^(e - Mod[e, 4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 15 2023 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] = 4*(f[i,2]\4);); factorback(f);} \\ Michel Marcus, Mar 16 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A008835(n): return prod(p**(e&-4) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024

Formula

a(n) = A000188(A000188(n))^4.
Multiplicative with a(p^e) = p^(4[e/4]). - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(s) * zeta(4s-4) / zeta(4s). - Álvar Ibeas, Feb 12 2015
Sum_{k=1..n} a(k) ~ zeta(5/4) * n^(5/4) / (5*zeta(5)) - 45*n/Pi^4. - Vaclav Kotesovec, Feb 03 2019
a(n) = n/A053165(n). - Amiram Eldar, Aug 15 2023
a(n) = A053164(n)^4. - Amiram Eldar, Sep 01 2024

Extensions

Entry improved by comments from Henry Bottomley, Feb 29 2000