A008835 Largest 4th power dividing n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 81
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
Programs
-
Maple
with(numtheory): [ seq( expand(nthpow(i,4)),i=1..200) ];
-
Mathematica
Max@ Select[Divisors@ #, IntegerQ@ Power[#, 1/4] &] & /@ Range@ 81 (* Michael De Vlieger, Mar 18 2015 *) f[p_, e_] := p^(e - Mod[e, 4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 15 2023 *)
-
PARI
a(n) = {f = factor(n); for (i=1, #f~, f[i,2] = 4*(f[i,2]\4);); factorback(f);} \\ Michel Marcus, Mar 16 2015
-
Python
from math import prod from sympy import factorint def A008835(n): return prod(p**(e&-4) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024
Formula
Multiplicative with a(p^e) = p^(4[e/4]). - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(s) * zeta(4s-4) / zeta(4s). - Álvar Ibeas, Feb 12 2015
Sum_{k=1..n} a(k) ~ zeta(5/4) * n^(5/4) / (5*zeta(5)) - 45*n/Pi^4. - Vaclav Kotesovec, Feb 03 2019
a(n) = n/A053165(n). - Amiram Eldar, Aug 15 2023
a(n) = A053164(n)^4. - Amiram Eldar, Sep 01 2024
Extensions
Entry improved by comments from Henry Bottomley, Feb 29 2000