A008876 3x+1 sequence starting at 81.
81, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, E16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Darrell Cox, The 3n + 1 Problem: A Probabilistic Approach, Journal of Integer Sequences, Vol. 15 (2012), #12.5.2.
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Haskell
a008876 n = a008876_list !! n a008876_list = 81 : iterate a006370 81 -- Reinhard Zumkeller, Aug 30 2012
-
Magma
[n eq 1 select 81 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..70]]; // Vincenzo Librandi, Jul 29 2014
-
Maple
f := proc(n) option remember; if n = 0 then 81; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
-
Mathematica
NestList[If[EvenQ[#], #/2, 3# + 1]&, 81, 100] (* Vincenzo Librandi, Jul 29 2014 *)
-
PARI
Vec((81 + 244*x + 122*x^2 - 20*x^3 - 60*x^4 - 30*x^5 - 15*x^6 - 161*x^7 - 22*x^8 - 11*x^9 + 83*x^10 - 17*x^11 + 125*x^12 - 26*x^13 - 13*x^14 - 140*x^15 - 70*x^16 - 35*x^17 - 4*x^18 - 2*x^19 - x^20 - 14*x^21 - 7*x^22) / ((1 - x)*(1 + x + x^2)) + O(x^70)) \\ Colin Barker, Apr 27 2020
-
Scala
def collatz(n: Int): Int = n % 2 match { case 0 => n / 2; case _ => 3 * n + 1 } def collatzSeq(n: Int): LazyList[Int] = LazyList.iterate(n)(collatz) collatzSeq(81).take(100).toList // Alonso del Arte, Apr 24 2020
Formula
From Colin Barker, Apr 27 2020: (Start)
G.f.: (81 + 244*x + 122*x^2 - 20*x^3 - 60*x^4 - 30*x^5 - 15*x^6 - 161*x^7 - 22*x^8 - 11*x^9 + 83*x^10 - 17*x^11 + 125*x^12 - 26*x^13 - 13*x^14 - 140*x^15 - 70*x^16 - 35*x^17 - 4*x^18 - 2*x^19 - x^20 - 14*x^21 - 7*x^22) / ((1 - x)*(1 + x + x^2)).
a(n) = a(n-3) for n>22.
(End)