cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008876 3x+1 sequence starting at 81.

Original entry on oeis.org

81, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.

Crossrefs

Cf. A006370.
Row 81 of A347270.

Programs

  • Haskell
    a008876 n = a008876_list !! n
    a008876_list = 81 : iterate a006370 81
    -- Reinhard Zumkeller, Aug 30 2012
    
  • Magma
    [n eq 1 select 81 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..70]]; // Vincenzo Librandi, Jul 29 2014
    
  • Maple
    f := proc(n) option remember; if n = 0 then 81; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
  • Mathematica
    NestList[If[EvenQ[#], #/2, 3# + 1]&, 81, 100] (* Vincenzo Librandi, Jul 29 2014 *)
  • PARI
    Vec((81 + 244*x + 122*x^2 - 20*x^3 - 60*x^4 - 30*x^5 - 15*x^6 - 161*x^7 - 22*x^8 - 11*x^9 + 83*x^10 - 17*x^11 + 125*x^12 - 26*x^13 - 13*x^14 - 140*x^15 - 70*x^16 - 35*x^17 - 4*x^18 - 2*x^19 - x^20 - 14*x^21 - 7*x^22) / ((1 - x)*(1 + x + x^2)) + O(x^70)) \\ Colin Barker, Apr 27 2020
  • Scala
    def collatz(n: Int): Int = n % 2 match { case 0 => n / 2; case _ => 3 * n + 1 }
    def collatzSeq(n: Int): LazyList[Int] = LazyList.iterate(n)(collatz)
    collatzSeq(81).take(100).toList // Alonso del Arte, Apr 24 2020
    

Formula

From Colin Barker, Apr 27 2020: (Start)
G.f.: (81 + 244*x + 122*x^2 - 20*x^3 - 60*x^4 - 30*x^5 - 15*x^6 - 161*x^7 - 22*x^8 - 11*x^9 + 83*x^10 - 17*x^11 + 125*x^12 - 26*x^13 - 13*x^14 - 140*x^15 - 70*x^16 - 35*x^17 - 4*x^18 - 2*x^19 - x^20 - 14*x^21 - 7*x^22) / ((1 - x)*(1 + x + x^2)).
a(n) = a(n-3) for n>22.
(End)