cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008881 a(n) = Product_{j=0..5} floor((n+j)/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 972, 1296, 1728, 2304, 3072, 4096, 5120, 6400, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 38880, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 134456, 153664, 175616, 200704
Offset: 0

Views

Author

Keywords

Comments

For n >= 6, a(n) is the maximal product of 6 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
The maximal product of k positive variables when their sum is equal to s is obtained when each term = s/k; hence, a(6m) = m^6 (A001014). - Bernard Schott, Jul 28 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), this sequence (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Cf. A001014 (6th power), A008588 (multiples of 6), A013664.

Programs

  • GAP
    List([0..50], n-> Product([0..5], j-> Int((n+j)/6))); # G. C. Greubel, Sep 13 2019
  • Magma
    [(&*[Floor((n+j)/6): j in [0..5]]): n in [0..50]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq( mul( floor((n+i)/6), i=0..5 ), n=0..80);
  • Mathematica
    Product[Floor[(Range[51]+j-2)/6], {j,6}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    vector(50, n, prod(j=0,5, (n+j)\6) ) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    [product(floor((n+j)/6) for j in (0..5)) for n in (0..50)] # G. C. Greubel, Sep 13 2019
    

Formula

Sum_{n>=6} 1/a(n) = 1 + zeta(6). - Amiram Eldar, Jan 10 2023