cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008967 Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon's statistic. Irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 4

Views

Author

Keywords

Comments

Rows are numbers of dominoes with k spots where each half-domino has zero to n spots (in standard domino set: n=6, there are 28 dominoes and row is 1,1,2,2,3,3,4,3,3,2,2,1,1). - Henry Bottomley, Aug 23 2000
These numbers appear in the solution of Cayley's counting problem on covariants as N(p,2,w) = [x^p,q^w] Phi(q,x) with the o.g.f. Phi(q,x) = 1/((1-x)(1-qx)(1-q^2x)) given by Peter Bala in the formula section. See the Hawkins reference, p. 264, were also references are given. - Wolfdieter Lang, Nov 30 2012
The entry a(p,w), p >= 0, w = 0,1,...,2*p, of this irregular triangle is the number of nonnegative solutions of m_0 + m_1 + m_2 = p and 1*m_1 + 2*m_2 = w. See the Hawkins reference p. 264, (4.8). N(p,2,w) there is a(p,w). See also the Cayley reference p. 110, 35. with m = 2, Theta = p and q = w. - Wolfdieter Lang, Dec 01 2012
From Gus Wiseman, Sep 20 2023: (Start)
Also the number of unordered pairs of distinct positive integers up to n with sum k. For example, row n = 9 counts the following pairs:
12 13 14 15 16 17 18 19 29 39 49 59 69 79 89
23 24 25 26 27 28 38 48 58 68 78
34 35 36 37 47 57 67
45 46 56
Allowing repeated parts (x,x) gives A004737.
For strict partitions instead of just pairs we have A053632.
(End)

Examples

			1;
1,1,1;
1,1,2,1,1;
1,1,2,2,2,1,1;
1,1,2,2,3,2,2,1,1;
1,1,2,2,3,3,3,2,2,1,1;
...
Partitions: row p=2 and column w=2 has entry 2 because the 2 solutions of the two equations mentioned in a comment above are: m_0 = 0, m_1 = 2, m_2 = 0 and m_0 = 1, m_1 = 0, m_2 = 1. - _Wolfdieter Lang_, Dec 01 2012
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 242.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 236.
  • T. Hawkins, Emergence of the Theory of Lie Groups, Springer 2000, ch. 7.4, p. 260-5.

Crossrefs

A version with zeros is A219238.
This is the case of A365541 counting only length-2 subsets.

Programs

  • Maple
    qBinom := proc(n,m,q)
            mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ;
            factor(%) ;
            expand(%) ;
    end proc:
    A008967 := proc(n,k)
            coeftayl( qBinom(n,2,q),q=0,k ) ;
    end proc:
    seq(seq( A008967(n,k),k=0..2*n-4),n=2..10) ; # assumes offset 2. R. J. Mathar, Oct 13 2011
  • Mathematica
    rmax = 11; f[r_] := Product[(x^i - x^(r+1))/(1-x^i), {i, 1, r-2}]/  x^((r-1)*(r-2)/2); row[r_] := CoefficientList[ Series[ f[r], {x, 0, 2rmax}], x]; Flatten[ Table[ row[r], {r, 2, rmax}]] (* Jean-François Alcover, Oct 13 2011, after given formula *)
    T[n_, k_] := SeriesCoefficient[QBinomial[n - 2, 2, q], {q, 0, k}];
    Table[T[n, k], {n, 4, 13}, {k, 0, 2 n - 8}] // Flatten (* Jean-François Alcover, Aug 20 2019 *)
    Table[Length[Select[Subsets[Range[n],{2}],Total[#]==k&]],{n,2,15},{k,3,2n-1}] (* Gus Wiseman, Sep 20 2023 *)
  • SageMath
    print(flatten([q_binomial(n-2, 2).list() for n in (4..13)])) # Peter Luschny, Oct 23 2019

Formula

Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2) / x^((r-1)*(r-2)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset).
Expanding (q^n - 1)(q^(n+1) - 1)/((q - 1)(q^2 - 1)) in powers of q and taking coefficients gives the n-th row of the triangle. Ordinary generating function: 1/((1-x)(1-qx)(1-q^2x)) = 1 + x(1 + q + q^2) + x^2(1 + q + 2q^2 + q^3 + q^4) + .... - Peter Bala, Sep 23 2007
For n >= 2, let a(n,i) denote the i-th entry of the (n-1)-st row of this triangle; for every 0 <= i <= n-2, a(n,i) = a(n,2(n-2)-i) = ceiling((i+1)/2). - Christian Barrientos, Aug 08 2019

Extensions

More terms from Christian Barrientos, Aug 08 2019