A008975 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 10.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 0, 0, 5, 1, 1, 6, 5, 0, 5, 6, 1, 1, 7, 1, 5, 5, 1, 7, 1, 1, 8, 8, 6, 0, 6, 8, 8, 1, 1, 9, 6, 4, 6, 6, 4, 6, 9, 1, 1, 0, 5, 0, 0, 2, 0, 0, 5, 0, 1, 1, 1, 5, 5, 0, 2, 2, 0, 5, 5, 1, 1, 1, 2, 6, 0, 5, 2, 4, 2, 5, 0, 6, 2, 1, 1, 3, 8, 6, 5, 7, 6, 6
Offset: 0
Links
Crossrefs
Cf. A208278 (row sums), A208279 (central terms), A208134 (number of zeros per row), A208280 (distinct terms per row).
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), (this sequence) (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Haskell
a008975 n k = a008975_tabl !! n !! k a008975_row n = a008975_tabl !! n a008975_tabl = iterate (\row -> map (`mod` 10) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Feb 24 2012
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 10] (* Robert G. Wilson v, May 26 2004 *)
-
Python
from math import isqrt, comb from sympy.ntheory.modular import crt def A008975(n): w, c = n-((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(r+1)>>1), 1 d = int(not ~r & w) while True: r, a = divmod(r,5) w, b = divmod(w,5) c = c*comb(a,b)%5 if r<5 and w<5: c = c*comb(r,w)%5 break return crt([5,2],[c,d])[0] # Chai Wah Wu, May 01 2025
Formula
T(i, j) = binomial(i, j) mod 10.