A208279 Central terms of Pascal's triangle mod 10 (A008975).
1, 2, 6, 0, 0, 2, 4, 2, 0, 0, 6, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 4, 8, 4, 0, 0, 2, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 6, 0, 0, 2, 4, 2, 0, 0, 6, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a208279 n = a008975 (2*n) n
-
Maple
f:= proc(n) local A,v; A:= convert(n,base,5); if select(`>=`,A,3) <> [] then return 0 fi; v:= numboccur(1,A); if v > 0 then 2^v mod 10 else 6 fi end proc: f(0):= 1: map(f, [$0..200]); # Robert Israel, Dec 08 2023
-
Mathematica
Array[Mod[Binomial[2#,#],10]&,100,0] (* Paolo Xausa, Dec 09 2023 *)
-
Python
from sympy.ntheory.factor_ import digits def A208279(n): if n == 0: return 1 s = digits(n,5)[1:] return 0 if any(x>2 for x in s) else ((6,2,4,8)[a&3] if (a:=s.count(1)) else 6) # Chai Wah Wu, Dec 08 2023
Formula
a(n) = A008975(2*n,n) = binomial(2n,n) mod 10.
Comments