A009111 List of ordered areas of Pythagorean triangles.
6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 840, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620
Offset: 1
Keywords
Examples
6 is in the sequence because it is the area of the 3-4-5 triangle.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, 2nd Ed., Chpt. XIV, "The Eternal Triangle", pp. 104-134, Dover Publ., NY, 1964.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Andrew Granville, Solution to Problem 90:07, Western Number Theory Problems, 1991-12-19 & 22, ed. R. K. Guy.
- Ron Knott, Pythagorean Triangles
- Supriya Mohanty and S. P. Mohanty, Pythagorean Numbers, Fibonacci Quarterly 28 (1990), 31-42.
Programs
-
Mathematica
t = {}; nn = 200; mx = Sqrt[2*nn - 1] (nn - 1)/2; Do[x = Sqrt[n^2 - d^2]; If[x > 0 && IntegerQ[x] && x > d && d*x/2 <= mx, AppendTo[t, d*x/2]], {n, nn}, {d, n - 1}]; t = Sort[t]; t (* T. D. Noe, Sep 23 2013 *)
Formula
Theorem: The number of pairs of integers a > b > 0 with ab(a^2-b^2) < n^2 is Cn + O(n^(2/3)) where C = (1/2)*Integral_{1..infinity} du/sqrt(u^3-u). [Granville] - N. J. A. Sloane, Feb 07 2008
Comments