cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296741 Expansion of e.g.f. arcsin(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 4, 64, 2752, 237312, 34390016, 7512117248, 2302977392640, 942529341030400, 496287845973753856, 326775812392982937600, 263039306566659448242176, 254121613033387345942937600, 290175686081926976733941071872, 386599796043915196967089006968832
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*sec(x)) = x/1! + 4*x^3/3! + 64*x^5/5! + 2752*x^7/7! + 237312*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcSin[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*sec(x)).

A296742 Expansion of e.g.f. arcsinh(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 2, 4, -8, 2448, 130976, -2342848, -239130240, 99052990720, 8918588764672, -2795242017684480, -92786315822417920, 279479081010906828800, -57316070780459900928, -39411396653183724314673152, 5932051008707372732672475136, 10689040617354387626585873252352
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsinh(x*sec(x)) = x/1! + 2*x^3/3! + 4*x^5/5! - 8*x^7/7! + 2448*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[ArcSinh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asinh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsinh(x*sec(x)).

A296743 Expansion of e.g.f. arctanh(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 5, 109, 5977, 612729, 100954061, 24395453861, 8128143367905, 3571195811862385, 2000535014776893973, 1391684597704875555165, 1177047158822263838854889, 1189444022487013498606939625, 1415364934488337503351305867997, 1958850511524588636608881908473749
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arctanh(x*sec(x)) = x/1! + 5*x^3/3! + 109*x^5/5! + 5977*x^7/7! + 612729*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcTanh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(atanh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctanh(x*sec(x)).

A296790 Expansion of e.g.f. sec(x*sec(x)) (even powers only).

Original entry on oeis.org

1, 1, 17, 601, 38849, 4022641, 609933521, 127391254537, 35067716300033, 12304447787106529, 5360597104269331985, 2839145693984474128057, 1796556232541725248396737, 1338623568393194541863879761, 1160057210771530210422755155409, 1156898060700987368136296212581481
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			sec(x*sec(x)) = 1 + x^2/2! + 17*x^4/4! + 601*x^6/6! + 38849*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Sec[x Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sec(x*sec(x)).
a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 4.5851486299312178337601256220116584724159... is the real root of the equation sqrt(d) * cos(2/sqrt(d)) = 4/Pi and c = 1.99453594228967461336... - Vaclav Kotesovec, Dec 21 2017

A009301 E.g.f. exp(x/cosh(x)).

Original entry on oeis.org

1, 1, 1, -2, -11, -4, 181, 624, -3863, -37808, 66121, 2529440, 4478365, -197245632, -1211701763, 17275207936, 226423491793, -1517532372736, -43068302925551, 78275049887232, 8876725117679941, 24598365340871680, -1997577117130009403, -16151599386896207872, 483811389670392875449
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x/Cosh[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 26 2016 *)
  • PARI
    N=33;  x='x+O('x^N);
    egf=exp(x*1/cosh(x));
    Vec(serlaplace(egf))
    /* Joerg Arndt, Sep 15 2012 */

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A296791 Expansion of e.g.f. sech(x*sec(x)) (even powers only).

Original entry on oeis.org

1, -1, -7, -1, 3121, 132959, -1261591, -889217057, -79029091743, 5889540654911, 3289057601679065, 395957721046153023, -120519140613246313327, -71865162873642033099361, -9267049529998625177827639, 8376363338336819515365004319, 5693280488360087435524724806849
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			sech(x*sec(x)) = 1 - x^2/2! - 7*x^4/4! - x^6/6! + 3121*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Sech[x Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sech(x*sec(x)).
Showing 1-6 of 6 results.