A009179 E.g.f. cosh(x)/(1+x).
1, -1, 3, -9, 37, -185, 1111, -7777, 62217, -559953, 5599531, -61594841, 739138093, -9608795209, 134523132927, -2017846993905, 32285551902481, -548854382342177, 9879378882159187, -187708198761024553, 3754163975220491061
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..449
Programs
-
Maple
restart: G(x):= cosh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
-
Mathematica
a[n_] := (-1)^n (Exp[1] Gamma[1 + n, 1] + Exp[-1] Gamma[1 + n, -1])/2; Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
-
PARI
x='x+O('x^99); Vec(serlaplace(cosh(x)/(1+x))) \\ Altug Alkan, Dec 18 2017
Formula
a(n) = (-1)^n*floor(n!*cosh(1)). - Vladeta Jovovic, Aug 10 2002
a(n) = (1+(-1)^n)/2-n*a(n-1). - Vladeta Jovovic, Apr 19 2003
a(n) = (-1)^n * n! * sum{k=0, [n/2], 1/(2k)!}.
E.g.f.: U(0)/(1+x) where U(k)= 1 + x^2/((4*k+1)*(4*k+2) - x^2*(4*k+1)*(4*k+2)/(x^2 + (4*k+3)*(4*k+4)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2012
a(n) = (-1)^n*(exp(1)*Gamma(1+n,1) + exp(-1)*Gamma(1+n,-1))/2 - Peter Luschny, Dec 18 2017
Extensions
Extended with signs by Olivier Gérard, Mar 15 1997
Comments