A009190 "2p-twin peaks": a(n) is the least x with lpf(x) = lpf(x + 2p) = p = prime(n) and lpf(y) < p for all x < y < x + 2p, where lpf = least prime factor; a(n) = -1 if no such x exists.
7310131732015251470110369, 2061519317176132799110061, 3756800873017263196139951, 6316254452384500173544921, 14733008374252975993271023, 532045863029111910656094569, 476592878661578285779747459
Offset: 20
References
- Various postings to the Math-Fun mailing list, 1996-1997. See in particular the post by David W. Wilson on Feb 10 1997.
Links
- Jinyuan Wang, C++ program for computing the initial terms
- Eric Weisstein's World of Mathematics, Twin peaks
Programs
-
PARI
is_TwinPeak(x)={forstep(k=2,2*p=factor(x)[1,1],2,factor(x+k,p)[1,1]
Formula
Assuming a(n) > 0, then a(n) < A002110(n)/2, since if (x, x+2p) is a 2p-twin peak, then so is (q-x-2p, q-x), where q = A034386(p). - M. F. Hasler, Jan 28 2014
For n > 1, a(n) = -1 if A058989(n-1) < 2*prime(n) - 1. - Jinyuan Wang, Nov 27 2024
Extensions
a(24), found by Fred Helenius, added by Mauro Fiorentini, Feb 16 2020
Entry revised by N. J. A. Sloane, Aug 19 2020, based in part on email correspondence with Manjul Bhargava.
Incorrect a(24) removed by Brian Kehrig, May 23 2023
a(24)-a(26) from Jinyuan Wang, Nov 27 2024
Comments