cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009238 Expansion of e.g.f. exp(tan(sin(x))).

Original entry on oeis.org

1, 1, 1, 2, 5, 8, 13, -64, -855, -5632, -38791, -205184, -747539, -240640, 59637061, 859820032, 9421489105, 90170851328, 573991066225, 1502445600768, -49290541346219, -1320541298393088, -20481513828195331, -272882319216148480
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[Sin[x]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 25 2011 *)
  • Maxima
    a(n):=sum(sum((((-1)^(k-m)+1)*(sum(binomial(j-1,m-1)*j!*2^(k-j-1) *stirling2(k,j)*(-1)^((m+k)/2+j),j,m,k))*((-1)^(n-k)+1)*sum((2*i-k)^n *binomial(k,i)*(-1)^((n+k)/2-i),i,0,k/2))/(2^k*k!),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=exp(tan(sin(x))); /* = 1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + ... */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, May 05 2011 */

Formula

a(n) = Sum(m=1..n, Sum(k=m..n, (((-1)^(k-m)+1)*(Sum(j=m..k, C(j-1,m-1)*j! *2^(k-j-1) *Stirling2(k,j)*(-1)^((m+k)/2+j)))*((-1)^(n-k)+1)*Sum(i=0..k/2, (2*i-k)^n *C(k,i)*(-1)^((n+k)/2-i)))/(2^k*k!))/m!). - Vladimir Kruchinin, May 05 2011

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, May 05 2011