cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A009433 Expansion of e.g.f. log(1+x)/cosh(tan(x)).

Original entry on oeis.org

0, 1, -1, -1, 0, -11, 15, 27, -504, 11817, -94185, 1226455, -12442056, 155936221, -1995562569, 27870901107, -423463160400, 6793396567633, -117302680146033, 2130615128588591, -40960288523646320, 827190717641773765
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Tan(x)) ))); // G. C. Greubel, Sep 06 2023
    
  • Mathematica
    With[{m=25}, CoefficientList[Series[Log[1+x]/Cosh[Tan[x]], {x,0,m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 06 2023 *)
    CoefficientList[Series[Log[1 + x]*Sech[Tan[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
  • PARI
    my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(tan(x))))) \\ Joerg Arndt, Sep 06 2023
  • SageMath
    def A009433_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(1+x)/cosh(tan(x)) ).egf_to_ogf().list()
    A009433_list(40) # G. C. Greubel, Sep 06 2023
    

Formula

a(n) ~ (n-1)! * (-1)^(n+1) / cosh(tan(1)). - Vaclav Kotesovec, Jan 23 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Showing 1-1 of 1 results.