cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009434 Expansion of e.g.f: log(1+x)/cosh(tanh(x)).

Original entry on oeis.org

0, 1, -1, -1, 0, 69, -225, -1653, 3976, 187401, -965385, -14516745, 61266744, 3032650893, -21187300953, -491788726653, 2947006495920, 166337505847057, -1463633608132017, -46261934493321105, 358635306874354320
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Tanh(x)) ))); // G. C. Greubel, Sep 06 2023
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[1+x]/Cosh[Tanh[x]],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Jun 19 2013 *)
  • PARI
    my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(tanh(x))))) \\ Joerg Arndt, Sep 06 2023
  • SageMath
    def A009434_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(1+x)/cosh(tanh(x)) ).egf_to_ogf().list()
    A009434_list(40) # G. C. Greubel, Sep 06 2023
    

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Jun 19 2013

A009432 Expansion of e.g.f. log(1+x)/cosh(sinh(x)).

Original entry on oeis.org

0, 1, -1, -1, 0, 9, -45, 447, -2744, 17553, -171585, 1757535, -19723176, 245370969, -3189613245, 44636677407, -674857335120, 10851333193249, -185485926579489, 3356664148618047, -64009236131219760, 1284480775318317225
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Sinh(x)) ))); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Log[1+x]/Cosh[Sinh[x]], {x,0,m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 08 2023 *)
  • SageMath
    def A009432_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(1+x)/cosh(sinh(x)) ).egf_to_ogf().list()
    A009432_list(31) # G. C. Greubel, Sep 08 2023

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Showing 1-2 of 2 results.