cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009439 Expansion of e.g.f. log(1+x)/exp(tanh(x)).

Original entry on oeis.org

0, 1, -3, 8, -16, 29, -191, 1980, -14456, 85713, -657171, 7877880, -97759608, 1100545341, -13021637695, 185198054748, -2933940050000, 46990261427073, -774002505048195, 13811029423532424, -266175983849182016
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Tanh(x)) ))); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[1+x]/Exp[Tanh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 19 2023 *)
  • SageMath
    def A009439_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(1+x)*exp(-tanh(x)) ).egf_to_ogf().list()
    A009439_list(31) # G. C. Greubel, Sep 08 2023

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified and previous Mathematica program replaced by Harvey P. Dale, May 19 2023

A009437 Expansion of e.g.f. log(1+x)/exp(sinh(x)).

Original entry on oeis.org

0, 1, -3, 8, -28, 119, -581, 3345, -22352, 170889, -1480881, 14361885, -154177068, 1814792589, -23230500541, 321160966833, -4767464107904, 75612375796689, -1275789176648193, 22815192314465685, -431023517858496044
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Sinh(x)) ))); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[1+x]/Exp[Sinh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 01 2013 *)
  • SageMath
    def A009437_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(1+x)*exp(-sinh(x)) ).egf_to_ogf().list()
    A009437_list(31) # G. C. Greubel, Sep 08 2023

Formula

a(n) ~ (n-1)! * (-1)^(n+1) * exp(sinh(1)). - Vaclav Kotesovec, Jan 23 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Oct 01 2013
Showing 1-2 of 2 results.