A009490 Number of distinct orders of permutations of n objects; number of nonisomorphic cyclic subgroups of symmetric group S_n.
1, 1, 2, 3, 4, 6, 6, 9, 11, 14, 16, 20, 23, 27, 31, 35, 43, 47, 55, 61, 70, 78, 88, 98, 111, 123, 136, 152, 168, 187, 204, 225, 248, 271, 296, 325, 356, 387, 418, 455, 495, 537, 581, 629, 678, 732, 787, 851, 918, 986, 1056, 1133, 1217, 1307, 1399, 1498, 1600, 1708, 1823
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- L. Elliott, A. Levine, and J. D. Mitchell, Counting monogenic monoids and inverse monoids, arXiv:2303.12387 [math.GR], 2023.
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
Maple
b:= proc(n,i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0 or i<1, 1, b(n, i-1)+ add(b(n-p^j, i-1), j=1..ilog[p](n))) end: a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=0..100); # Alois P. Heinz, Feb 15 2013
-
Mathematica
Table[ Length[ Union[ Apply[ LCM, Partitions[ n ], 1 ] ] ], {n, 30} ] f[n_] := Length@ Union[LCM @@@ IntegerPartitions@ n]; Array[f, 60, 0] (* Caution, the following is Extremely Slow and Resource Intensive *) CoefficientList[ Series[ Expand[ Product[1 + Sum[x^(Prime@ i^k), {k, 4}], {i, 10}]/(1 - x)], {x, 0, 30}], x] b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, b[n, i-1]+Sum[b[n-p^j, i-1], {j, 1, Log[p, n]}]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
-
PARI
/* compute David W. Wilson's g.f., needs <1 sec for 1000 terms */ N=1000; x='x+O('x^N); /* N terms */ gf=1; /* generating function */ { forprime(p=2,N, sm = 1; pp=p; /* sum; prime power */ while ( pp
Joerg Arndt, Jan 19 2011 */
Formula
a(n) = Sum_{k=0..n} b(k), where b(k) is the number of partitions of k into distinct prime power parts (1 excluded) (A051613). - Vladeta Jovovic
G.f.: (Product_{p prime} (1 + Sum_{k >= 1} x^(p^k))) / (1-x). - David W. Wilson, Apr 19 2000
Comments