cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009747 E.g.f. tan(x)*sinh(x) (even powers only).

Original entry on oeis.org

0, 2, 12, 142, 3192, 116282, 6219972, 458790022, 44625674352, 5534347077362, 852334810990332, 159592488559874302, 35703580441464231912, 9405575479317650316842, 2881823738166957609703092, 1016124476854507687644180982, 408525180980254462140262747872, 185768439922172208338308590282722
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A009739 and (apparently) A062161.

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[Sinh[x]*Tan[x], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace(tan(x)*sinh(x))); concat([0],vector(#v\2,n,v[2*n-1])) \\ Joerg Arndt, Apr 26 2013
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A009747_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(2*n) :
            Am = 1 if e == -1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            if e == -1 : R.append(A[-i//2])
        return R
    A009747_list(10) # Peter Luschny, Jun 02 2012
    

Formula

a(n) ~ (2*n)! * 4^(n+1) * sinh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Jan 24 2015

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997