A109449
Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
5, 8, 6, 4, 1;
16, 25, 20, 10, 5, 1;
61, 96, 75, 40, 15, 6, 1;
272, 427, 336, 175, 70, 21, 7, 1;
1385, 2176, 1708, 896, 350, 112, 28, 8, 1;
7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1;
50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, The Swiss-Knife polynomials.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a109449 n k = a109449_row n !! k
a109449_row n = zipWith (*)
(a007318_row n) (reverse $ take (n + 1) a000111_list)
a109449_tabl = map a109449_row [0..]
-- Reinhard Zumkeller, Nov 02 2013
-
f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
[A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
-
From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
(End)
-
lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
-
A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
-
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) :
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_row(n):
x = R.gen()
return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by
Peter Luschny, Jul 10 2009
A000667
Boustrophedon transform of all-1's sequence.
Original entry on oeis.org
1, 2, 4, 9, 24, 77, 294, 1309, 6664, 38177, 243034, 1701909, 13001604, 107601977, 959021574, 9157981309, 93282431344, 1009552482977, 11568619292914, 139931423833509, 1781662223749884, 23819069385695177, 333601191667149054, 4884673638115922509
Offset: 0
...............1..............
............1..->..2..........
.........4..<-.3...<-..1......
......1..->.5..->..8...->..9..
- Alois P. Heinz, Table of n, a(n) for n = 0..485 (first 101 terms from T. D. Noe)
- C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform.
Absolute value of pairwise sums of
A009337.
-
a000667 n = if x == 1 then last xs else x
where xs@(x:_) = a227862_row n
-- Reinhard Zumkeller, Nov 01 2013
-
With[{nn=30},CoefficientList[Series[Exp[x](Tan[x]+Sec[x]),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Nov 28 2011 *)
t[, 0] = 1; t[n, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k];
a[n_] := t[n, n];
Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
x='x+O('x^33); Vec(serlaplace( exp(x)*(tan(x) + 1/cos(x)) ) ) \\ Joerg Arndt, Jul 30 2016
-
from itertools import islice, accumulate
def A000667_gen(): # generator of terms
blist = tuple()
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=1)))[-1]
A000667_list = list(islice(A000667_gen(),20)) # Chai Wah Wu, Jun 11 2022
-
# Algorithm of L. Seidel (1877)
def A000667_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
# print [A[z] for z in (-i//2..i//2)]
R.append(A[e*i//2])
return R
A000667_list(10) # Peter Luschny, Jun 02 2012
A009739
E.g.f. tan(x)*exp(x).
Original entry on oeis.org
0, 1, 2, 5, 12, 41, 142, 685, 3192, 19921, 116282, 887765, 6219972, 56126201, 458790022, 4776869245, 44625674352, 526589630881, 5534347077362, 72989204937125, 852334810990332, 12424192360405961, 159592488559874302, 2547879762929443405, 35703580441464231912
Offset: 0
-
G(x):=exp(x)*tan(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..22 ); # Zerinvary Lajos, Apr 05 2009
# Alternative:
S:= series(exp(x)*tan(x),x, 51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Sep 22 2019
-
x='x+O('x^66); concat([0],Vec(serlaplace(tan(x)*exp(x)))) \\ Joerg Arndt, Apr 26 2013
A062161
Boustrophedon transform of n mod 2.
Original entry on oeis.org
0, 1, 2, 4, 12, 36, 142, 624, 3192, 18256, 116282, 814144, 6219972, 51475776, 458790022, 4381112064, 44625674352, 482962852096, 5534347077362, 66942218896384, 852334810990332, 11394877025289216, 159592488559874302, 2336793875186479104, 35703580441464231912
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform.
-
a062161 n = sum $ zipWith (*) (a109449_row n) $ cycle [0,1]
-- Reinhard Zumkeller, Nov 03 2013
-
With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])Sinh[x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Feb 16 2013 *)
-
from itertools import accumulate, islice
def A062161_gen(): # generator of terms
blist, m = tuple(), 1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
A062161_list = list(islice(A062161_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062161_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == -1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
# print [A[z] for z in (-i//2..i//2)]
R.append(A[e*i//2])
return R
A062161_list(10) # Peter Luschny, Jun 02 2012
A087800
a(n) = 12*a(n-1) - a(n-2), with a(0) = 2 and a(1) = 12.
Original entry on oeis.org
2, 12, 142, 1692, 20162, 240252, 2862862, 34114092, 406506242, 4843960812, 57721023502, 687808321212, 8195978831042, 97663937651292, 1163771272984462, 13867591338162252, 165247324784962562, 1969100306081388492
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003
a(4) = 20162 = 12a(3) - a(2) = 12*1692 - 142 = (6+sqrt(35))^4 + (6-sqrt(35))^4 = 20161.9999504 + 0.00004959 = 20162.
G.f. = 2 + 12*x + 142*x^2 + 1692*x^3 + 20162*x^4 + 240252*x^5 + ...
-
I:=[2,12]; [n le 2 select I[n] else 12*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
-
a[0] = 2; a[1] = 12; a[n_] := 12a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
CoefficientList[Series[(2 - 12 x)/(1 - 12 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 28 2014 *)
a[ n_] := 2 ChebyshevT[ n, 6]; (* Michael Somos, May 28 2014 *)
LinearRecurrence[{12,-1},{2,12},20] (* Harvey P. Dale, Jan 29 2019 *)
-
Vec((2-12*x)/(1-12*x+x^2) + O(x^100)) \\ Colin Barker, Feb 25 2014
-
{a(n) = 2 * polchebyshev( n, 1, 6)}; /* Michael Somos, May 28 2014 */
-
[lucas_number2(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
A296462
Expansion of e.g.f. arcsin(x)*arctanh(x) (even powers only).
Original entry on oeis.org
0, 2, 12, 238, 9912, 708282, 77392260, 12002011110, 2507167177200, 678724656721650, 231129344455890300, 96694934804540934750, 48752132066414189721000, 29154453671147281799726250, 20403607225475633039372992500, 16520371586328834323725749873750, 15322889489994265975004588078700000
Offset: 0
arcsin(x)*arctanh(x) = 2*x^2/2! + 12*x^4/4! + 238*x^6/6! + 9912*x^8/8! + 708282*x^10/10! + ...
-
nmax = 16; Table[(CoefficientList[Series[ArcSin[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 16; Table[(CoefficientList[Series[I (Log[1 - x] - Log[1 + x]) Log[I x + Sqrt[1 - x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A024272
E.g.f. tan(x)*sinh(x)/2 (even powers only).
Original entry on oeis.org
0, 1, 6, 71, 1596, 58141, 3109986, 229395011, 22312837176, 2767173538681, 426167405495166, 79796244279937151, 17851790220732115956, 4702787739658825158421, 1440911869083478804851546, 508062238427253843822090491, 204262590490127231070131373936, 92884219961086104169154295141361
Offset: 0
-
With[{nn = 50}, Take[CoefficientList[Series[Tan[x]*Sinh[x]/2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* G. C. Greubel, Apr 12 2017 *)
-
x='x+O('x^66); v=Vec(serlaplace(tan(x)*sinh(x)/2)); concat([0],vector(#v\2,n,v[2*n-1])) \\ Joerg Arndt, Apr 26 2013
Extended and signs tested 03/97.
A296463
Expansion of e.g.f. arcsinh(x)*arctanh(x) (even powers only).
Original entry on oeis.org
0, 2, 4, 158, 3624, 427482, 29665260, 6948032310, 991515848400, 383952670412850, 93532380775766100, 53913667654307868750, 20087427376748637675000, 16096655588343149442026250, 8531309209053208518037597500, 9057367559484733295974741323750, 6486329752640392315697926589700000
Offset: 0
arcsinh(x)*arctanh(x) = 2*x^2/2! + 4*x^4/4! + 158*x^6/6! + 3624*x^8/8! + 427482*x^10/10! + ..
-
nmax = 16; Table[(CoefficientList[Series[ArcSinh[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 16; Table[(CoefficientList[Series[(Log[1 + x] - Log[1 - x]) Log[x + Sqrt[1 + x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Showing 1-8 of 8 results.
Comments