A109449
Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
5, 8, 6, 4, 1;
16, 25, 20, 10, 5, 1;
61, 96, 75, 40, 15, 6, 1;
272, 427, 336, 175, 70, 21, 7, 1;
1385, 2176, 1708, 896, 350, 112, 28, 8, 1;
7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1;
50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, The Swiss-Knife polynomials.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a109449 n k = a109449_row n !! k
a109449_row n = zipWith (*)
(a007318_row n) (reverse $ take (n + 1) a000111_list)
a109449_tabl = map a109449_row [0..]
-- Reinhard Zumkeller, Nov 02 2013
-
f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
[A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
-
From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
(End)
-
lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
-
A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
-
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) :
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_row(n):
x = R.gen()
return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by
Peter Luschny, Jul 10 2009
A059216
Variation of Boustrophedon transform applied to all-1's sequence (see Comments for details).
Original entry on oeis.org
1, 2, 5, 14, 45, 169, 740, 3721, 21142, 133850, 933770, 7114115, 58758459, 522892624, 4987285553, 50751731950, 548839590949, 6285265061237, 75985249771496, 967047685739501, 12923640789599709, 180945893711983990, 2648725169100050894
Offset: 1
The array begins
1 2 1 14 1 ...
1 3 10 15 ...
5 6 26 ...
1 37 ...
45 ...
-
# To get the array used to produce this sequence:
aaa := proc(m,n) option remember; local i,j,r,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(1); fi; if m = 0 and n mod 2 = 0 then RETURN(1); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
# To get the array formed when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
aab := proc(b,N,m,n) local i, j, r, s, t1; option remember; if m>N or n>N then error "asking for too many terms"; fi; if m = 0 and n mod 2 = 0 then RETURN(b[n+1]) end if; if n = 0 and m mod 2 = 1 then RETURN(b[m+1]) end if; s := m + n; if s mod 2 = 1 then t1 := aab(b,N,m + 1, n - 1); for j from 0 to n - 1 do t1 := t1 + aab(b,N,m, j) end do else t1 := aab(b,N,m - 1, n + 1); for j from 0 to m - 1 do t1 := t1 + aab(b,N,j, n) end do end if; RETURN(t1) end proc;
# To get the output sequence when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
ff := proc(b) local N,t1,i; N := min(35, nops(b)); t1 := []; for i from 0 to N-1 do if i mod 2 = 0 then t1 := [op(t1),aab(b,N,i,0)]; else t1 := [op(t1),aab(b,N,0,i)]; fi; od: t1; end;
-
max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n + 1, k - 1] + Sum[t[n, j], {j, 0, k - 1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n - 1, k + 1] + Sum[t[j, k], {j, 0, n - 1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max - n}]; Join[{1}, Rest[Union[tnk[[1]], tnk[[All, 1]]]]] (* Jean-François Alcover, Jun 15 2012 *)
More terms from
N. J. A. Sloane and Larry Reeves (larryr(AT)acm.org), Jan 23 2001
A059219
Variation of Boustrophedon transform applied to sequence 1,0,0,0,...: fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal after the first is 0. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).
Original entry on oeis.org
1, 1, 2, 5, 15, 55, 239, 1199, 6810, 43108, 300731, 2291162, 18923688, 168402163, 1606199354, 16345042652, 176758631046, 2024225038882, 24471719797265, 311446235344127, 4162172487402027, 58275220793611957, 853045299274146032
Offset: 0
The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
-
aaa := proc(m,n) option remember; local j,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
-
max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](* up *):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](* down *):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max-n}]; Join[{1}, Rest[Union[tnk[[1]], tnk[[All, 1]]]]](* Jean-François Alcover, May 16 2012 *)
A059502
a(n) = (3*n*F(2n-1) + (3-n)*F(2n))/5 where F() = Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 3, 9, 27, 80, 234, 677, 1941, 5523, 15615, 43906, 122868, 342409, 950727, 2631165, 7260579, 19982612, 54865566, 150316973, 411015705, 1121818311, 3056773383, 8316416134, 22593883752, 61301547025, 166118284299, 449639574897, 1215751720491, 3283883157848
Offset: 0
The array (see A059503) begins
1 3 9 27 80 ...
2 5 14 40 ...
3 7 19 ...
4 9 5 ...
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 17, 19.
- Index entries for two-way infinite sequences
- Index entries for sequences related to boustrophedon transform
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
[(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
-
Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5,{n,0,30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Apr 23 2011 *)
-
a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
A062162
Boustrophedon transform of (-1)^n.
Original entry on oeis.org
1, 0, 0, 1, 0, 5, 10, 61, 280, 1665, 10470, 73621, 561660, 4650425, 41441530, 395757181, 4031082640, 43626778785, 499925138190, 6046986040741, 76992601769220, 1029315335116745, 14416214547400450, 211085887742964301, 3225154787165157400, 51329932704636904305
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a062162 = abs . sum . a247453_row -- Reinhard Zumkeller, Sep 17 2014
-
CoefficientList[Series[E^(-x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
t[n_, 0] := (-1)^n; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import islice, accumulate
def A062162_gen(): # generator of terms
blist, m = tuple(), -1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m:=-m))))[-1]
A062162_list = list(islice(A062162_gen(),20)) # Chai Wah Wu, Jun 10 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062162_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = (-1)^i
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
R.append(A[e*i//2])
return R
A062162_list(22) # Peter Luschny, Jun 02 2012
A062272
Boustrophedon transform of (n+1) mod 2.
Original entry on oeis.org
1, 1, 2, 5, 12, 41, 152, 685, 3472, 19921, 126752, 887765, 6781632, 56126201, 500231552, 4776869245, 48656756992, 526589630881, 6034272215552, 72989204937125, 929327412759552, 12424192360405961, 174008703107274752
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a062272 n = sum $ zipWith (*) (a109449_row n) $ cycle [1,0]
-- Reinhard Zumkeller, Nov 03 2013
-
s[n_] = Mod[n+1, 2]; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import accumulate, islice
def A062272_gen(): # generator of terms
blist, m = tuple(), 0
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
A062272_list = list(islice(A062272_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062272_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == 1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
R.append(A[e*i//2])
return R
A062272_list(10) # Peter Luschny, Jun 02 2012
A059217
The array in A059216 read by antidiagonals in 'up' direction.
Original entry on oeis.org
1, 1, 2, 5, 3, 1, 1, 6, 10, 14, 45, 37, 26, 15, 1, 1, 46, 84, 121, 150, 169, 740, 686, 592, 471, 321, 170, 1, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 21142, 20347, 18826, 16685, 13953, 10777, 7255, 3722, 1, 1, 21143, 41491, 61798, 80598
Offset: 1
The array begins
1 2 1 14 1 ...
1 3 10 15 ...
5 6 26 ...
1 37 ...
45 ...
-
See A059216 for Maple code.
-
max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)
A059220
The array in A059219 read by antidiagonals in 'up' direction.
Original entry on oeis.org
1, 0, 1, 2, 1, 0, 0, 2, 3, 5, 15, 12, 8, 5, 0, 0, 15, 27, 39, 48, 55, 239, 221, 190, 152, 103, 55, 0, 0, 239, 460, 680, 871, 1025, 1137, 1199, 6810, 6553, 6062, 5374, 4493, 3471, 2336, 1199, 0, 0, 6810, 13363, 19903, 25958, 31351, 35884, 39399, 41847
Offset: 1
The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
-
See A059219 for Maple code.
-
max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n + k] (* up *) := t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k] (* down *) := t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2013 *)
A027994
a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.
Original entry on oeis.org
1, 2, 6, 16, 43, 114, 301, 792, 2080, 5456, 14301, 37468, 98137, 256998, 672946, 1761984, 4613239, 12078110, 31621701, 82787980, 216743836, 567446112, 1485598681, 3889356696, 10182482353, 26658108074, 69791870526, 182717549872, 478360854115, 1252365133866, 3278734743901, 8583839415648, 22472784017272
Offset: 0
-
[(Fibonacci(2*n+3)-Fibonacci(n))/2 : n in [0..40]]; // Vincenzo Librandi, Jan 01 2025
-
Table[(Fibonacci[2n+3]-Fibonacci[n])/2,{n,0,30}] (* or *) LinearRecurrence[{4,-3,-2,1},{1,2,6,16},30] (* Harvey P. Dale, Apr 28 2022 *)
-
a(n)=(fibonacci(2*n+3)-fibonacci(n))/2
A059503
The array in A059502 read by antidiagonals in 'up' direction.
Original entry on oeis.org
1, 2, 3, 3, 5, 9, 4, 7, 14, 27, 5, 9, 19, 40, 80, 6, 11, 24, 53, 114, 234, 7, 13, 29, 66, 148, 323, 677, 8, 15, 34, 79, 182, 412, 910, 1941, 9, 17, 39, 92, 216, 501, 1143, 2551, 5523, 10, 19, 44, 105, 250, 590, 1376, 3161, 7120, 15615, 11, 21, 49, 118
Offset: 0
The array begins
1 3 9 27 80 ...
2 5 14 40 ...
3 7 19 ...
4 9 5 ...
-
T[n_, k_] := ((3 - k)*Fibonacci[2*k] + (5*n + 3*k)*Fibonacci[2*k - 1])/5;
TableForm[Table[T[n, k], {n, 0, 5}, {k, 1, 5}]]
Table[T[n - k, k + 1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 10 2017 *)
Showing 1-10 of 37 results.
Comments