cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A109449 Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The boustrophedon transform {t} of a sequence {s} is given by t_n = Sum_{k=0..n} T(n,k)*s(k). Triangle may be called the boustrophedon triangle.
The 'signed version' of the triangle is the exponential Riordan array [sech(x) + tanh(x), x]. - Peter Luschny, Jan 24 2009
Up to signs, the matrix is self-inverse: T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 15 2013

Examples

			Triangle starts:
      1;
      1,     1;
      1,     2,     1;
      2,     3,     3,     1;
      5,     8,     6,     4,     1;
     16,    25,    20,    10,     5,    1;
     61,    96,    75,    40,    15,    6,    1;
    272,   427,   336,   175,    70,   21,    7,   1;
   1385,  2176,  1708,   896,   350,  112,   28,   8,  1;
   7936, 12465,  9792,  5124,  2016,  630,  168,  36,  9,  1;
  50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
		

Crossrefs

Programs

  • Haskell
    a109449 n k = a109449_row n !! k
    a109449_row n = zipWith (*)
                    (a007318_row n) (reverse $ take (n + 1) a000111_list)
    a109449_tabl = map a109449_row [0..]
    -- Reinhard Zumkeller, Nov 02 2013
    
  • Magma
    f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
    A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
    [A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
  • Maple
    From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
    A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
    seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
    B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
    R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
    E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
    sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
    L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
    X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
    (End)
  • Mathematica
    lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
  • PARI
    A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    R = PolynomialRing(ZZ, 'x')
    @CachedFunction
    def skp(n, x) :
        if n == 0 : return 1
        return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A109449_row(n):
        x = R.gen()
        return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
    for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
    

Formula

Sum_{k>=0} T(n, k) = A000667(n).
Sum_{k>=0} T(2n, 2k) = A000795(n).
Sum_{k>=0} T(2n, 2k+1) = A009747(n).
Sum_{k>=0} T(2n+1, 2k) = A003719(n).
Sum_{k>=0} T(2n+1, 2k+1) = A002084(n).
Sum_{k>=0} T(n, 2k) = A062272(n).
Sum_{k>=0} T(n, 2k+1) = A062161(n).
Sum_{k>=0} (-1)^(k)*T(n, k) = A062162(n). - Johannes W. Meijer, Apr 20 2011
E.g.f.: exp(x*y)*(sec(x)+tan(x)). - Vladeta Jovovic, May 20 2007
T(n,k) = 2^(n-k)*C(n,k)*|E(n-k,1/2) + E(n-k,1)| - [n=k] where C(n,k) is the binomial coefficient, E(m,x) are the Euler polynomials and [] the Iverson bracket. - Peter Luschny, Jan 24 2009
From Reikku Kulon, Feb 26 2009: (Start)
A109449(n, 0) = A000111(n), approx. round(2^(n + 2) * n! / Pi^(n + 1)).
A109449(n, n - 1) = n.
A109449(n, n) = 1.
For n > 0, k > 0: A109449(n, k) = A109449(n - 1, k - 1) * n / k. (End)
From Peter Luschny, Jul 10 2009: (Start)
Let p_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v C(k,v)*F(k)*(x+v+1)^n, where F(0)=1 and for k>0 F(k)=-1 + s_k 2^floor((k-1)/2), s_k is 0 if k mod 8 in {2,6}, 1 if k mod 8 in {0,1,7} and otherwise -1. T(n,k) are the absolute values of the coefficients of these polynomials.
Another way to express the polynomials p_n(x) is
p_n(x) = -x^n + Sum_{k=0..n} binomial(n,k)*Euler(k)((x+1)^(n-k) + x^(n-k)). (End)
From Peter Bala, Jan 26 2011: (Start)
An explicit formula for the n-th row polynomial is
x^n + i*Sum_{k=1..n}((1+i)/2)^(k-1)*Sum_{j=0..k} (-1)^j*binomial(k,j)*(x+i*j)^n, where i = sqrt(-1). This is the triangle of connection constants between the polynomial sequences {Z(n,x+1)} and {Z(n,x)}, where Z(n,x) denotes the zigzag polynomials described in A147309.
Denote the present array by M. The first column of the array (I-x*M)^-1 is a sequence of rational functions in x whose numerator polynomials are the row polynomials of A145876 - the generalized Eulerian numbers associated with the zigzag numbers. (End)
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then
T(n,k) = [x^(n-k)] |skp{n}(x) - skp{n}(x-1) + x^n|. - Peter Luschny, Jul 22 2012
T(n,k) = A007318(n,k) * A000111(n - k), k = 0..n. - Reinhard Zumkeller, Nov 02 2013
T(n,k) = abs(A247453(n,k)). - Reinhard Zumkeller, Sep 17 2014

Extensions

Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by Peter Luschny, Jul 10 2009

A059216 Variation of Boustrophedon transform applied to all-1's sequence (see Comments for details).

Original entry on oeis.org

1, 2, 5, 14, 45, 169, 740, 3721, 21142, 133850, 933770, 7114115, 58758459, 522892624, 4987285553, 50751731950, 548839590949, 6285265061237, 75985249771496, 967047685739501, 12923640789599709, 180945893711983990, 2648725169100050894
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Comments

Variation of Boustrophedon transform applied to all-1's sequence. Fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal is 1. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Programs

  • Maple
    # To get the array used to produce this sequence:
    aaa := proc(m,n) option remember; local i,j,r,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(1); fi; if m = 0 and n mod 2 = 0 then RETURN(1); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
    # To get the array formed when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
    aab := proc(b,N,m,n) local i, j, r, s, t1; option remember; if m>N or n>N then error "asking for too many terms"; fi; if m = 0 and n mod 2 = 0 then RETURN(b[n+1]) end if; if n = 0 and m mod 2 = 1 then RETURN(b[m+1]) end if; s := m + n; if s mod 2 = 1 then t1 := aab(b,N,m + 1, n - 1); for j from 0 to n - 1 do t1 := t1 + aab(b,N,m, j) end do else t1 := aab(b,N,m - 1, n + 1); for j from 0 to m - 1 do t1 := t1 + aab(b,N,j, n) end do end if; RETURN(t1) end proc;
    # To get the output sequence when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
    ff := proc(b) local N,t1,i; N := min(35, nops(b)); t1 := []; for i from 0 to N-1 do if i mod 2 = 0 then t1 := [op(t1),aab(b,N,i,0)]; else t1 := [op(t1),aab(b,N,0,i)]; fi; od: t1; end;
  • Mathematica
    max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n + 1, k - 1] + Sum[t[n, j], {j, 0, k - 1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n - 1, k + 1] + Sum[t[j, k], {j, 0, n - 1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max - n}]; Join[{1}, Rest[Union[tnk[[1]], tnk[[All, 1]]]]] (* Jean-François Alcover, Jun 15 2012 *)

Extensions

More terms from N. J. A. Sloane and Larry Reeves (larryr(AT)acm.org), Jan 23 2001

A059219 Variation of Boustrophedon transform applied to sequence 1,0,0,0,...: fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal after the first is 0. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Original entry on oeis.org

1, 1, 2, 5, 15, 55, 239, 1199, 6810, 43108, 300731, 2291162, 18923688, 168402163, 1606199354, 16345042652, 176758631046, 2024225038882, 24471719797265, 311446235344127, 4162172487402027, 58275220793611957, 853045299274146032
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
		

Crossrefs

Programs

  • Maple
    aaa := proc(m,n) option remember; local j,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
  • Mathematica
    max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](* up *):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](* down *):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max-n}]; Join[{1},  Rest[Union[tnk[[1]], tnk[[All, 1]]]]](* Jean-François Alcover, May 16 2012 *)

Extensions

More terms from Floor van Lamoen, Jan 19 2001; and from N. J. A. Sloane Jan 20 2001.

A059502 a(n) = (3*n*F(2n-1) + (3-n)*F(2n))/5 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 3, 9, 27, 80, 234, 677, 1941, 5523, 15615, 43906, 122868, 342409, 950727, 2631165, 7260579, 19982612, 54865566, 150316973, 411015705, 1121818311, 3056773383, 8316416134, 22593883752, 61301547025, 166118284299, 449639574897, 1215751720491, 3283883157848
Offset: 0

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

Substituting x(1-x)/(1-2x) into x/(1-x)^2 yields g.f. of sequence.
Variation of A059216 (and of Boustrophedon transform) applied to 1,2,3,4,...: fill an array by diagonals, each time in the same direction, say the 'up' direction. The first column is 1,2,3,4,... For the next element of a diagonal, add to the previous element the elements of the row the new element is in. The first row gives a(n).

Examples

			The array (see A059503) begins
  1 3  9 27 80 ...
  2 5 14 40 ...
  3 7 19 ...
  4 9  5 ...
		

Crossrefs

Programs

  • Magma
    [(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
  • Mathematica
    Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5,{n,0,30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
    

Formula

a(n) = 2*a(n-1) + Sum{m<=n-2} a(m) + A001519(n-2).
G.f.: x*(1 - x)*(1 - 2*x)/(1 - 3*x + x^2)^2. - Emeric Deutsch, Oct 07 2002
a(n) = A147703(n,1). - Philippe Deléham, Nov 29 2008
a(n) = A001871(n-1) - 3*A001871(n-2) + 2*A001871(n-3). - R. J. Mathar, Apr 09 2019
E.g.f.: 2*exp(3*x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

A062162 Boustrophedon transform of (-1)^n.

Original entry on oeis.org

1, 0, 0, 1, 0, 5, 10, 61, 280, 1665, 10470, 73621, 561660, 4650425, 41441530, 395757181, 4031082640, 43626778785, 499925138190, 6046986040741, 76992601769220, 1029315335116745, 14416214547400450, 211085887742964301, 3225154787165157400, 51329932704636904305
Offset: 0

Views

Author

Frank Ellermann, Jun 10 2001

Keywords

Comments

Inverse binomial transform of Euler numbers A000111. - Paul Barry, Jan 21 2005
a(n) = abs(sum of row n in A247453). - Reinhard Zumkeller, Sep 17 2014

Crossrefs

Cf. A000111 (binomial transform).
Cf. A000667.
Cf. A247453.

Programs

  • Haskell
    a062162 = abs . sum . a247453_row -- Reinhard Zumkeller, Sep 17 2014
    
  • Mathematica
    CoefficientList[Series[E^(-x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
    t[n_, 0] := (-1)^n; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import islice, accumulate
    def A062162_gen(): # generator of terms
        blist, m = tuple(), -1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m:=-m))))[-1]
    A062162_list = list(islice(A062162_gen(),20)) # Chai Wah Wu, Jun 10 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062162_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = (-1)^i
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            R.append(A[e*i//2])
        return R
    A062162_list(22) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: exp(-x)*(tan(x) + sec(x)). - Vladeta Jovovic, Feb 11 2003
a(n) ~ 4*(2*n/Pi)^(n+1/2)/exp(n+Pi/2). - Vaclav Kotesovec, Oct 05 2013
G.f.: E(0)*x/(1+x) + 1/(1+x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*k-1)*(x*(k+1)-1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014

A062272 Boustrophedon transform of (n+1) mod 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 41, 152, 685, 3472, 19921, 126752, 887765, 6781632, 56126201, 500231552, 4776869245, 48656756992, 526589630881, 6034272215552, 72989204937125, 929327412759552, 12424192360405961, 174008703107274752
Offset: 0

Views

Author

Frank Ellermann, Jun 16 2001

Keywords

Crossrefs

A000734 (binomial transform), a(2n+1)= A003719(n), a(2n)= A000795(n),
Cf. A062161 (n mod 2).
Row sums of A162170 minus A000035. - Mats Granvik, Jun 27 2009
Cf. A059841.

Programs

  • Haskell
    a062272 n = sum $ zipWith (*) (a109449_row n) $ cycle [1,0]
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    s[n_] = Mod[n+1, 2]; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, islice
    def A062272_gen(): # generator of terms
        blist, m = tuple(), 0
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
    A062272_list = list(islice(A062272_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062272_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == 1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            R.append(A[e*i//2])
        return R
    A062272_list(10) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: (sec(x)+tan(x))cosh(x); a(n)=(A000667(n)+A062162(n))/2. - Paul Barry, Jan 21 2005
a(n) = Sum{k, k>=0} binomial(n, 2k)*A000111(n-2k). - Philippe Deléham, Aug 28 2005
a(n) = sum(A109449(n,k) * (1 - n mod 2): k=0..n). - Reinhard Zumkeller, Nov 03 2013

A059217 The array in A059216 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 1, 2, 5, 3, 1, 1, 6, 10, 14, 45, 37, 26, 15, 1, 1, 46, 84, 121, 150, 169, 740, 686, 592, 471, 321, 170, 1, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 21142, 20347, 18826, 16685, 13953, 10777, 7255, 3722, 1, 1, 21143, 41491, 61798, 80598
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Programs

  • Maple
    See A059216 for Maple code.
  • Mathematica
    max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)

A059220 The array in A059219 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 0, 2, 3, 5, 15, 12, 8, 5, 0, 0, 15, 27, 39, 48, 55, 239, 221, 190, 152, 103, 55, 0, 0, 239, 460, 680, 871, 1025, 1137, 1199, 6810, 6553, 6062, 5374, 4493, 3471, 2336, 1199, 0, 0, 6810, 13363, 19903, 25958, 31351, 35884, 39399, 41847
Offset: 1

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
   1   1   0   5   0  55   0 ...
   0   1   3   5  48  55   ...
   2   2   8  39 103  ...
   0  12  27 152 ...
  15  15 190 ...
   0 221 ...
		

Crossrefs

Programs

  • Maple
    See A059219 for Maple code.
  • Mathematica
    max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n + k] (* up *) := t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k] (* down *) := t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2013 *)

Extensions

More terms from Floor van Lamoen, Jan 19 2001

A027994 a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

1, 2, 6, 16, 43, 114, 301, 792, 2080, 5456, 14301, 37468, 98137, 256998, 672946, 1761984, 4613239, 12078110, 31621701, 82787980, 216743836, 567446112, 1485598681, 3889356696, 10182482353, 26658108074, 69791870526, 182717549872, 478360854115, 1252365133866, 3278734743901, 8583839415648, 22472784017272
Offset: 0

Views

Author

Keywords

Comments

Substituting x*(1-x)/(1-2x) into x^2/(1-x^2) yields x^2*(g.f. of sequence).
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
Diagonal sums of triangle in A125171. - Philippe Deléham, Jan 14 2014

Crossrefs

Programs

  • Magma
    [(Fibonacci(2*n+3)-Fibonacci(n))/2 : n in [0..40]]; // Vincenzo Librandi, Jan 01 2025
  • Mathematica
    Table[(Fibonacci[2n+3]-Fibonacci[n])/2,{n,0,30}] (* or *) LinearRecurrence[{4,-3,-2,1},{1,2,6,16},30] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    a(n)=(fibonacci(2*n+3)-fibonacci(n))/2
    

Formula

G.f.: (1-x)^2/((1-x-x^2)*(1-3*x+x^2)). - Floor van Lamoen and N. J. A. Sloane, Jan 21 2001
a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027926.
a(n) = 2*a(n-1) + Sum_{m < n-1} a(m) + F(n-1) = A059512(n+2) - F(n) where F(n) is the n-th Fibonacci number (A000045). - Floor van Lamoen, Jan 21 2001
a(n) = (2/5)*Sum_{k=1..4} sin(2*Pi*k/5)*sin(3*Pi*k/5)*(1+2*cos(Pi*k/5))^(n+1). - Herbert Kociemba, Jun 02 2004
a(-1-2n) = A056014(2n), a(-2n) = A005207(2n-1).
E.g.f.: exp(3*x/2)*cosh(sqrt(5)*x/2) + exp(x/2)*(2*exp(x) - 1)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 01 2025

A059503 The array in A059502 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 4, 7, 14, 27, 5, 9, 19, 40, 80, 6, 11, 24, 53, 114, 234, 7, 13, 29, 66, 148, 323, 677, 8, 15, 34, 79, 182, 412, 910, 1941, 9, 17, 39, 92, 216, 501, 1143, 2551, 5523, 10, 19, 44, 105, 250, 590, 1376, 3161, 7120, 15615, 11, 21, 49, 118
Offset: 0

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Examples

			The array begins
1 3 9 27 80 ...
2 5 14 40 ...
3 7 19 ...
4 9 5 ...
		

Crossrefs

Rows give A059502, A059505, A059506, A059507, A059508; main diagonal = A059509.

Programs

  • Mathematica
    T[n_, k_] := ((3 - k)*Fibonacci[2*k] + (5*n + 3*k)*Fibonacci[2*k - 1])/5;
    TableForm[Table[T[n, k], {n, 0, 5}, {k, 1, 5}]]
    Table[T[n - k, k + 1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 10 2017 *)

Formula

T(n,k) = ((3 - k)*Fibonacci(2*k) + (5*n + 3*k)*Fibonacci(2*k - 1))/5. - G. C. Greubel, Sep 10 2017
Showing 1-10 of 37 results. Next