cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A059217 The array in A059216 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 1, 2, 5, 3, 1, 1, 6, 10, 14, 45, 37, 26, 15, 1, 1, 46, 84, 121, 150, 169, 740, 686, 592, 471, 321, 170, 1, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 21142, 20347, 18826, 16685, 13953, 10777, 7255, 3722, 1, 1, 21143, 41491, 61798, 80598
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Programs

  • Maple
    See A059216 for Maple code.
  • Mathematica
    max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)

A059718 Triangle T(n,k), 0<=k<=n, giving coefficients when output sequence O_0, O_1, O_2, ... from transformation described in A059216 is expressed in terms of input sequence I_0, I_1, I_2, ...

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 16, 15, 1, 5, 14, 35, 59, 55, 1, 6, 20, 64, 152, 258, 239, 1, 7, 27, 105, 319, 767, 1296, 1199, 1, 8, 35, 160, 590, 1820, 4356, 7362, 6810, 1, 9, 44, 231, 1000, 3751, 11514, 27583, 46609, 43108, 1, 10, 54, 320, 1589
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2001

Keywords

Examples

			The triangle begins as:
  1;
  1, 1;
  1, 2, 2;
  1, 3, 5,  5;
  1, 4, 9, 16, 15;
  ...
For example, O_4 = I_4 + 4*I_3 + 9*I_2 + 16*I_1 + 15*I_0.
		

Crossrefs

A059234 The array in A059216 read by antidiagonals in the direction in which it was constructed.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 6, 10, 14, 1, 15, 26, 37, 45, 1, 46, 84, 121, 150, 169, 1, 170, 321, 471, 592, 686, 740, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 1, 3722, 7255, 10777, 13953, 16685, 18826, 20347, 21142, 1, 21143, 41491, 61798, 80598, 97345, 111419
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 23 2001

A059219 Variation of Boustrophedon transform applied to sequence 1,0,0,0,...: fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal after the first is 0. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Original entry on oeis.org

1, 1, 2, 5, 15, 55, 239, 1199, 6810, 43108, 300731, 2291162, 18923688, 168402163, 1606199354, 16345042652, 176758631046, 2024225038882, 24471719797265, 311446235344127, 4162172487402027, 58275220793611957, 853045299274146032
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
		

Crossrefs

Programs

  • Maple
    aaa := proc(m,n) option remember; local j,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
  • Mathematica
    max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](* up *):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](* down *):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max-n}]; Join[{1},  Rest[Union[tnk[[1]], tnk[[All, 1]]]]](* Jean-François Alcover, May 16 2012 *)

Extensions

More terms from Floor van Lamoen, Jan 19 2001; and from N. J. A. Sloane Jan 20 2001.

A059502 a(n) = (3*n*F(2n-1) + (3-n)*F(2n))/5 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 3, 9, 27, 80, 234, 677, 1941, 5523, 15615, 43906, 122868, 342409, 950727, 2631165, 7260579, 19982612, 54865566, 150316973, 411015705, 1121818311, 3056773383, 8316416134, 22593883752, 61301547025, 166118284299, 449639574897, 1215751720491, 3283883157848
Offset: 0

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

Substituting x(1-x)/(1-2x) into x/(1-x)^2 yields g.f. of sequence.
Variation of A059216 (and of Boustrophedon transform) applied to 1,2,3,4,...: fill an array by diagonals, each time in the same direction, say the 'up' direction. The first column is 1,2,3,4,... For the next element of a diagonal, add to the previous element the elements of the row the new element is in. The first row gives a(n).

Examples

			The array (see A059503) begins
  1 3  9 27 80 ...
  2 5 14 40 ...
  3 7 19 ...
  4 9  5 ...
		

Crossrefs

Programs

  • Magma
    [(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
  • Mathematica
    Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5,{n,0,30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
    

Formula

a(n) = 2*a(n-1) + Sum{m<=n-2} a(m) + A001519(n-2).
G.f.: x*(1 - x)*(1 - 2*x)/(1 - 3*x + x^2)^2. - Emeric Deutsch, Oct 07 2002
a(n) = A147703(n,1). - Philippe Deléham, Nov 29 2008
a(n) = A001871(n-1) - 3*A001871(n-2) + 2*A001871(n-3). - R. J. Mathar, Apr 09 2019
E.g.f.: 2*exp(3*x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

A059220 The array in A059219 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 0, 2, 3, 5, 15, 12, 8, 5, 0, 0, 15, 27, 39, 48, 55, 239, 221, 190, 152, 103, 55, 0, 0, 239, 460, 680, 871, 1025, 1137, 1199, 6810, 6553, 6062, 5374, 4493, 3471, 2336, 1199, 0, 0, 6810, 13363, 19903, 25958, 31351, 35884, 39399, 41847
Offset: 1

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
   1   1   0   5   0  55   0 ...
   0   1   3   5  48  55   ...
   2   2   8  39 103  ...
   0  12  27 152 ...
  15  15 190 ...
   0 221 ...
		

Crossrefs

Programs

  • Maple
    See A059219 for Maple code.
  • Mathematica
    max = 9; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n + k] (* up *) := t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n + k] (* down *) := t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2013 *)

Extensions

More terms from Floor van Lamoen, Jan 19 2001

A027994 a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

1, 2, 6, 16, 43, 114, 301, 792, 2080, 5456, 14301, 37468, 98137, 256998, 672946, 1761984, 4613239, 12078110, 31621701, 82787980, 216743836, 567446112, 1485598681, 3889356696, 10182482353, 26658108074, 69791870526, 182717549872, 478360854115, 1252365133866, 3278734743901, 8583839415648, 22472784017272
Offset: 0

Views

Author

Keywords

Comments

Substituting x*(1-x)/(1-2x) into x^2/(1-x^2) yields x^2*(g.f. of sequence).
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
Diagonal sums of triangle in A125171. - Philippe Deléham, Jan 14 2014

Crossrefs

Programs

  • Magma
    [(Fibonacci(2*n+3)-Fibonacci(n))/2 : n in [0..40]]; // Vincenzo Librandi, Jan 01 2025
  • Mathematica
    Table[(Fibonacci[2n+3]-Fibonacci[n])/2,{n,0,30}] (* or *) LinearRecurrence[{4,-3,-2,1},{1,2,6,16},30] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    a(n)=(fibonacci(2*n+3)-fibonacci(n))/2
    

Formula

G.f.: (1-x)^2/((1-x-x^2)*(1-3*x+x^2)). - Floor van Lamoen and N. J. A. Sloane, Jan 21 2001
a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027926.
a(n) = 2*a(n-1) + Sum_{m < n-1} a(m) + F(n-1) = A059512(n+2) - F(n) where F(n) is the n-th Fibonacci number (A000045). - Floor van Lamoen, Jan 21 2001
a(n) = (2/5)*Sum_{k=1..4} sin(2*Pi*k/5)*sin(3*Pi*k/5)*(1+2*cos(Pi*k/5))^(n+1). - Herbert Kociemba, Jun 02 2004
a(-1-2n) = A056014(2n), a(-2n) = A005207(2n-1).
E.g.f.: exp(3*x/2)*cosh(sqrt(5)*x/2) + exp(x/2)*(2*exp(x) - 1)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 01 2025

A059503 The array in A059502 read by antidiagonals in 'up' direction.

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 4, 7, 14, 27, 5, 9, 19, 40, 80, 6, 11, 24, 53, 114, 234, 7, 13, 29, 66, 148, 323, 677, 8, 15, 34, 79, 182, 412, 910, 1941, 9, 17, 39, 92, 216, 501, 1143, 2551, 5523, 10, 19, 44, 105, 250, 590, 1376, 3161, 7120, 15615, 11, 21, 49, 118
Offset: 0

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Examples

			The array begins
1 3 9 27 80 ...
2 5 14 40 ...
3 7 19 ...
4 9 5 ...
		

Crossrefs

Rows give A059502, A059505, A059506, A059507, A059508; main diagonal = A059509.

Programs

  • Mathematica
    T[n_, k_] := ((3 - k)*Fibonacci[2*k] + (5*n + 3*k)*Fibonacci[2*k - 1])/5;
    TableForm[Table[T[n, k], {n, 0, 5}, {k, 1, 5}]]
    Table[T[n - k, k + 1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 10 2017 *)

Formula

T(n,k) = ((3 - k)*Fibonacci(2*k) + (5*n + 3*k)*Fibonacci(2*k - 1))/5. - G. C. Greubel, Sep 10 2017

A062704 Di-Boustrophedon transform of all 1's sequence: Fill in an array by diagonals alternating in the 'up' and 'down' directions. Each diagonal starts with a 1. When going in the 'up' direction the next element is the sum of the previous element of the diagonal and the previous two elements of the row the new element is in. When going in the 'down' direction the next element is the sum of the previous element of the diagonal and the previous two elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Original entry on oeis.org

1, 2, 5, 13, 40, 145, 616, 3017, 16752, 103973, 713040, 5352729, 43645848, 384059537, 3626960272, 36585357429, 392545057280, 4463791225145, 53622168102640, 678508544425721, 9020035443775264, 125684948107190045, 1831698736650660952, 27866044704218390113
Offset: 1

Views

Author

Floor van Lamoen, Jul 11 2001

Keywords

Examples

			The array begins:
   1   2   1  13   1
   1   3  10  14
   5   6  25
   1  34
  40
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if n<1 or k<1 then 0
        elif n=1 and irem(k, 2)=1 or k=1 and irem(n, 2)=0 then 1
        elif irem(n+k, 2)=0 then T(n-1, k+1)+T(n-1, k)+T(n-2, k)
                            else T(n+1, k-1)+T(n, k-1)+T(n, k-2)
          fi
        end:
    a:= n-> `if`(irem (n, 2)=0, T(1, n), T(n, 1)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 08 2011
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0
         , n == 1 && Mod[k, 2] == 1 || k == 1 && Mod[n, 2] == 0, 1
         , Mod[n + k, 2] == 0, T[n - 1, k + 1] + T[n - 1, k] + T[n - 2, k]
         , True,               T[n + 1, k - 1] + T[n, k - 1] + T[n, k - 2]];
    a[n_] := If[Mod [n, 2] == 0, T[1, n], T[n, 1]];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 08 2011

A059512 For n>=2, the number of (s(0), s(1), ..., s(n-1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n-1, s(0) = 2, s(n-1) = 2.

Original entry on oeis.org

0, 1, 1, 3, 7, 18, 46, 119, 309, 805, 2101, 5490, 14356, 37557, 98281, 257231, 673323, 1762594, 4614226, 12079707, 31624285, 82792161, 216750601, 567457058, 1485616392, 3889385353, 10182528721, 26658183099, 69791991919
Offset: 0

Views

Author

Floor van Lamoen, Jan 21 2001

Keywords

Comments

Substituting x(1-x)/(1-2x) into x/(1-x^2) yields g.f. of sequence.

Crossrefs

a(1-2n)=A005207(2n), a(-2n)=A056014(2n+1).

Programs

  • Mathematica
    CoefficientList[Series[x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)), {x,0,30}], x]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    a(n)=(fibonacci(2*n-1)+fibonacci(n-2))/2

Formula

a(n) = 2a(n-1) + Sum{mA000045).
G.f.: x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)).
a(n+1)=sum{k=0..floor(n/2), C(n,2k)*F(2k+1)}. [From Paul Barry, Oct 14 2009]
Showing 1-10 of 21 results. Next