cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059720 Triangle T(n,k), 0<=k<=n, formed from coefficients when formula for n-th diagonal of triangle in A059718 is written as a sum of binomial coefficients.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 2, 0, 15, 29, 20, 5, 0, 55, 148, 158, 80, 16, 0, 239, 818, 1185, 910, 366, 61, 0, 1199, 4964, 9094, 9392, 5696, 1904, 272, 0, 6810, 32989, 73026, 94833, 77011, 38719, 11080, 1385, 0, 43108, 238931, 619904, 970152, 988040, 663904, 285424, 71424, 7936
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2001

Keywords

Comments

I would very much like to find a formula for this - N. J. A. Sloane.

Examples

			1; 0,1; 0,2,1; 0,5,6,2; 0,15,29,20,5; ... E.g. the n=3 diagonal in A059718 has the formula b(m) = 0 + 5*m + 6*C(m,2) + 2*C(m,3) and so the third row here is 0, 5, 6, 2.
		

Crossrefs

Interesting because it connects a mysterious sequence (A059219, the left edge) with a known sequence (A000111, the right edge). Cf. A059724, A059725, A059726.

A059216 Variation of Boustrophedon transform applied to all-1's sequence (see Comments for details).

Original entry on oeis.org

1, 2, 5, 14, 45, 169, 740, 3721, 21142, 133850, 933770, 7114115, 58758459, 522892624, 4987285553, 50751731950, 548839590949, 6285265061237, 75985249771496, 967047685739501, 12923640789599709, 180945893711983990, 2648725169100050894
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Comments

Variation of Boustrophedon transform applied to all-1's sequence. Fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal is 1. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Programs

  • Maple
    # To get the array used to produce this sequence:
    aaa := proc(m,n) option remember; local i,j,r,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(1); fi; if m = 0 and n mod 2 = 0 then RETURN(1); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
    # To get the array formed when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
    aab := proc(b,N,m,n) local i, j, r, s, t1; option remember; if m>N or n>N then error "asking for too many terms"; fi; if m = 0 and n mod 2 = 0 then RETURN(b[n+1]) end if; if n = 0 and m mod 2 = 1 then RETURN(b[m+1]) end if; s := m + n; if s mod 2 = 1 then t1 := aab(b,N,m + 1, n - 1); for j from 0 to n - 1 do t1 := t1 + aab(b,N,m, j) end do else t1 := aab(b,N,m - 1, n + 1); for j from 0 to m - 1 do t1 := t1 + aab(b,N,j, n) end do end if; RETURN(t1) end proc;
    # To get the output sequence when the transformation is applied to an arbitrary input sequence b = [b[1], b[2], ..., b[N]]:
    ff := proc(b) local N,t1,i; N := min(35, nops(b)); t1 := []; for i from 0 to N-1 do if i mod 2 = 0 then t1 := [op(t1),aab(b,N,i,0)]; else t1 := [op(t1),aab(b,N,0,i)]; fi; od: t1; end;
  • Mathematica
    max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 1; t[?OddQ, 0] = 1; t[n_, k_] /; OddQ[n + k](*up*):= t[n, k] = t[n + 1, k - 1] + Sum[t[n, j], {j, 0, k - 1}]; t[n_, k_] /; EvenQ[n + k](*down*):= t[n, k] = t[n - 1, k + 1] + Sum[t[j, k], {j, 0, n - 1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max - n}]; Join[{1}, Rest[Union[tnk[[1]], tnk[[All, 1]]]]] (* Jean-François Alcover, Jun 15 2012 *)

Extensions

More terms from N. J. A. Sloane and Larry Reeves (larryr(AT)acm.org), Jan 23 2001

A059219 Variation of Boustrophedon transform applied to sequence 1,0,0,0,...: fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal after the first is 0. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).

Original entry on oeis.org

1, 1, 2, 5, 15, 55, 239, 1199, 6810, 43108, 300731, 2291162, 18923688, 168402163, 1606199354, 16345042652, 176758631046, 2024225038882, 24471719797265, 311446235344127, 4162172487402027, 58275220793611957, 853045299274146032
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
		

Crossrefs

Programs

  • Maple
    aaa := proc(m,n) option remember; local j,s,t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)
  • Mathematica
    max = 22; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](* up *):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](* down *):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max-n}]; Join[{1},  Rest[Union[tnk[[1]], tnk[[All, 1]]]]](* Jean-François Alcover, May 16 2012 *)

Extensions

More terms from Floor van Lamoen, Jan 19 2001; and from N. J. A. Sloane Jan 20 2001.

A076038 Square array read by ascending antidiagonals in which row n has g.f. C/(1-n*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 10, 14, 14, 1, 5, 17, 35, 42, 42, 1, 6, 26, 74, 126, 132, 132, 1, 7, 37, 137, 326, 462, 429, 429, 1, 8, 50, 230, 726, 1446, 1716, 1430, 1430, 1, 9, 65, 359, 1434, 3858, 6441, 6435, 4862, 4862, 1, 10, 82, 530, 2582, 8952, 20532, 28770, 24310, 16796, 16796
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Examples

			Array begins as:
  1 1  2  5  14  42 ... (n=0)
  1 2  5 14  42 132 ... (n=1)
  1 3 10 35 126 ... (n=2)
  1 4 17 74 326 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; Power[0,0]=1; Protect[Power]; A[n_, m_]:= 1/(m+1)*Sum[Binomial[2*m-k, m]*(k+1)*(n-m)^k,{k,0,m}]; Table[A[n,m],{n,0,10},{m,0,n}]//Flatten (* Stefano Spezia, Sep 01 2025 *)

Formula

A(n, m) = 1/(m+1)*Sum_{k=0..m} binomial(2*m-k, m)*(k+1)*(n-m)^k, m=0..n.

Extensions

More terms from Vladeta Jovovic, Jul 18 2003
a(63)-a(65) from Stefano Spezia, Sep 01 2025

A063415 Triangle of coefficients of di-Boustrophedon transform (see A063179) read by rows: Let the original sequence be (U0,U1,...) and the transformed sequence (V0,V2,...), then Vn is a linear combination of U0,...,Un. T(n,m) is the coefficient that goes with Um to get Vn.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 12, 14, 9, 4, 1, 42, 51, 32, 14, 5, 1, 178, 214, 137, 60, 20, 6, 1, 870, 1049, 668, 295, 100, 27, 7, 1, 4830, 5820, 3713, 1636, 555, 154, 35, 8, 1, 29976, 36125, 23036, 10160, 3446, 952, 224, 44, 9, 1, 205572, 247734, 157993, 69664
Offset: 0

Views

Author

Floor van Lamoen, Jul 19 2001

Keywords

Examples

			The triangle begins:
......1
....1...1
..2...2...1
4...5...3...1
		

Crossrefs

T(n, 0) is A063179. Row sums form A062704. T(n, n-2) is A000096. Cf. A059718.
Showing 1-5 of 5 results.