A059509 Main diagonal of the array A059503.
1, 5, 19, 66, 216, 679, 2075, 6211, 18299, 53244, 153366, 438095, 1242709, 3504161, 9830371, 27454614, 76375860, 211732471, 585157679, 1612689439, 4433421131, 12160156560, 33284285874, 90931830431, 247991356201, 675243561149, 1835863145395, 4984516006506, 13516071450384
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to boustrophedon transform
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Crossrefs
Cf. A059503.
Programs
-
Mathematica
Rest[CoefficientList[Series[x*(x^3 - x + 1)/(x^2 - 3*x + 1)^2, {x,0,50}], x]] (* or *) Table[((3 - n)*Fibonacci[2*n] - (5 - 8*n)*Fibonacci[2*n - 1])/5, {n, 1, 50}] (* G. C. Greubel, Sep 10 2017 *)
-
PARI
Vec(x*(x^3-x+1)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017
Formula
From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(x^3-x+1)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) - (5 - 8*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017
E.g.f.: 1 + exp(3*x/2)*(5*(7*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x + 11)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Apr 11 2025
Comments