cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A109449 Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The boustrophedon transform {t} of a sequence {s} is given by t_n = Sum_{k=0..n} T(n,k)*s(k). Triangle may be called the boustrophedon triangle.
The 'signed version' of the triangle is the exponential Riordan array [sech(x) + tanh(x), x]. - Peter Luschny, Jan 24 2009
Up to signs, the matrix is self-inverse: T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 15 2013

Examples

			Triangle starts:
      1;
      1,     1;
      1,     2,     1;
      2,     3,     3,     1;
      5,     8,     6,     4,     1;
     16,    25,    20,    10,     5,    1;
     61,    96,    75,    40,    15,    6,    1;
    272,   427,   336,   175,    70,   21,    7,   1;
   1385,  2176,  1708,   896,   350,  112,   28,   8,  1;
   7936, 12465,  9792,  5124,  2016,  630,  168,  36,  9,  1;
  50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
		

Crossrefs

Programs

  • Haskell
    a109449 n k = a109449_row n !! k
    a109449_row n = zipWith (*)
                    (a007318_row n) (reverse $ take (n + 1) a000111_list)
    a109449_tabl = map a109449_row [0..]
    -- Reinhard Zumkeller, Nov 02 2013
    
  • Magma
    f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
    A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
    [A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
  • Maple
    From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
    A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
    seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
    B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
    R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
    E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
    sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
    L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
    X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
    (End)
  • Mathematica
    lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
  • PARI
    A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    R = PolynomialRing(ZZ, 'x')
    @CachedFunction
    def skp(n, x) :
        if n == 0 : return 1
        return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A109449_row(n):
        x = R.gen()
        return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
    for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
    

Formula

Sum_{k>=0} T(n, k) = A000667(n).
Sum_{k>=0} T(2n, 2k) = A000795(n).
Sum_{k>=0} T(2n, 2k+1) = A009747(n).
Sum_{k>=0} T(2n+1, 2k) = A003719(n).
Sum_{k>=0} T(2n+1, 2k+1) = A002084(n).
Sum_{k>=0} T(n, 2k) = A062272(n).
Sum_{k>=0} T(n, 2k+1) = A062161(n).
Sum_{k>=0} (-1)^(k)*T(n, k) = A062162(n). - Johannes W. Meijer, Apr 20 2011
E.g.f.: exp(x*y)*(sec(x)+tan(x)). - Vladeta Jovovic, May 20 2007
T(n,k) = 2^(n-k)*C(n,k)*|E(n-k,1/2) + E(n-k,1)| - [n=k] where C(n,k) is the binomial coefficient, E(m,x) are the Euler polynomials and [] the Iverson bracket. - Peter Luschny, Jan 24 2009
From Reikku Kulon, Feb 26 2009: (Start)
A109449(n, 0) = A000111(n), approx. round(2^(n + 2) * n! / Pi^(n + 1)).
A109449(n, n - 1) = n.
A109449(n, n) = 1.
For n > 0, k > 0: A109449(n, k) = A109449(n - 1, k - 1) * n / k. (End)
From Peter Luschny, Jul 10 2009: (Start)
Let p_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v C(k,v)*F(k)*(x+v+1)^n, where F(0)=1 and for k>0 F(k)=-1 + s_k 2^floor((k-1)/2), s_k is 0 if k mod 8 in {2,6}, 1 if k mod 8 in {0,1,7} and otherwise -1. T(n,k) are the absolute values of the coefficients of these polynomials.
Another way to express the polynomials p_n(x) is
p_n(x) = -x^n + Sum_{k=0..n} binomial(n,k)*Euler(k)((x+1)^(n-k) + x^(n-k)). (End)
From Peter Bala, Jan 26 2011: (Start)
An explicit formula for the n-th row polynomial is
x^n + i*Sum_{k=1..n}((1+i)/2)^(k-1)*Sum_{j=0..k} (-1)^j*binomial(k,j)*(x+i*j)^n, where i = sqrt(-1). This is the triangle of connection constants between the polynomial sequences {Z(n,x+1)} and {Z(n,x)}, where Z(n,x) denotes the zigzag polynomials described in A147309.
Denote the present array by M. The first column of the array (I-x*M)^-1 is a sequence of rational functions in x whose numerator polynomials are the row polynomials of A145876 - the generalized Eulerian numbers associated with the zigzag numbers. (End)
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then
T(n,k) = [x^(n-k)] |skp{n}(x) - skp{n}(x-1) + x^n|. - Peter Luschny, Jul 22 2012
T(n,k) = A007318(n,k) * A000111(n - k), k = 0..n. - Reinhard Zumkeller, Nov 02 2013
T(n,k) = abs(A247453(n,k)). - Reinhard Zumkeller, Sep 17 2014

Extensions

Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by Peter Luschny, Jul 10 2009

A062272 Boustrophedon transform of (n+1) mod 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 41, 152, 685, 3472, 19921, 126752, 887765, 6781632, 56126201, 500231552, 4776869245, 48656756992, 526589630881, 6034272215552, 72989204937125, 929327412759552, 12424192360405961, 174008703107274752
Offset: 0

Views

Author

Frank Ellermann, Jun 16 2001

Keywords

Crossrefs

A000734 (binomial transform), a(2n+1)= A003719(n), a(2n)= A000795(n),
Cf. A062161 (n mod 2).
Row sums of A162170 minus A000035. - Mats Granvik, Jun 27 2009
Cf. A059841.

Programs

  • Haskell
    a062272 n = sum $ zipWith (*) (a109449_row n) $ cycle [1,0]
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    s[n_] = Mod[n+1, 2]; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, islice
    def A062272_gen(): # generator of terms
        blist, m = tuple(), 0
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
    A062272_list = list(islice(A062272_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062272_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == 1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            R.append(A[e*i//2])
        return R
    A062272_list(10) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: (sec(x)+tan(x))cosh(x); a(n)=(A000667(n)+A062162(n))/2. - Paul Barry, Jan 21 2005
a(n) = Sum{k, k>=0} binomial(n, 2k)*A000111(n-2k). - Philippe Deléham, Aug 28 2005
a(n) = sum(A109449(n,k) * (1 - n mod 2): k=0..n). - Reinhard Zumkeller, Nov 03 2013

A062161 Boustrophedon transform of n mod 2.

Original entry on oeis.org

0, 1, 2, 4, 12, 36, 142, 624, 3192, 18256, 116282, 814144, 6219972, 51475776, 458790022, 4381112064, 44625674352, 482962852096, 5534347077362, 66942218896384, 852334810990332, 11394877025289216, 159592488559874302, 2336793875186479104, 35703580441464231912
Offset: 0

Views

Author

Frank Ellermann, Jun 10 2001

Keywords

Crossrefs

Programs

  • Haskell
    a062161 n = sum $ zipWith (*) (a109449_row n) $ cycle [0,1]
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])Sinh[x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Feb 16 2013 *)
  • Python
    from itertools import accumulate, islice
    def A062161_gen(): # generator of terms
        blist, m = tuple(), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
    A062161_list = list(islice(A062161_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062161_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == -1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            # print [A[z] for z in (-i//2..i//2)]
            R.append(A[e*i//2])
        return R
    A062161_list(10) # Peter Luschny, Jun 02 2012
    

Formula

a(2n) = A009747(n), a(2n+1) = A002084(n).
E.g.f.: (sec(x)+tan(x))*sinh(x); a(n)=(A000667(n)-A062162(n))/2. - Paul Barry, Jan 21 2005
a(n) = Sum{k, k>=0} binomial(n, 2k+1)*A000111(n-2k-1). - Philippe Deléham, Aug 28 2005
a(n) = Sum_{k=0..n} A109449(n,k) * (k mod 2). - Reinhard Zumkeller, Nov 03 2013 [corrected by Jason Yuen, Jan 07 2025]

A247453 T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 17 2014

Keywords

Comments

Matrix inverse of A109449, the unsigned version of this sequence. More precisely, consider both of these triangles as the nonzero lower left of an infinite square array / matrix, filled with zeros above/right of the diagonal. Then these are mutually inverse of each other; in matrix notation: A247453 . A109449 = A109449 . A247453 = Identity matrix. In more conventional notation, for any m,n >= 0, Sum_{k=0..n} A247453(n,k)*A109449(k,m) = Sum_{k=0..n} A109449(n,k)*A247453(k,m) = delta(m,n), the Kronecker delta (= 1 if m = n, 0 else). - M. F. Hasler, Oct 06 2017

Examples

			.   0:      1
.   1:     -1      1
.   2:      1     -2      1
.   3:     -2      3     -3      1
.   4:      5     -8      6     -4      1
.   5:    -16     25    -20     10     -5     1
.   6:     61    -96     75    -40     15    -6     1
.   7:   -272    427   -336    175    -70    21    -7    1
.   8:   1385  -2176   1708   -896    350  -112    28   -8   1
.   9:  -7936  12465  -9792   5124  -2016   630  -168   36  -9   1
.  10:  50521 -79360  62325 -32640  12810 -4032  1050 -240  45 -10  1  .
		

Crossrefs

Programs

  • Haskell
    a247453 n k = a247453_tabl !! n !! k
    a247453_row n = a247453_tabl !! n
    a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
    
  • Mathematica
    a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}];
    T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017

Formula

T(n,k) = (-1)^(n-k) * A007318(n,k) * A000111(n-k), k = 0..n;
T(n,k) = (-1)^(n-k) * A109449(n,k); A109449(n,k) = abs(T(n,k));
abs(sum of row n) = A062162(n);
Sum_{k=0..n} T(n,k)*A000111(k) = 0^n.

Extensions

Edited by M. F. Hasler, Oct 06 2017

A101473 Boustrophedon transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 3, 9, 31, 111, 453, 2059, 10571, 60651, 386253, 2704659, 20661411, 170990691, 1523975053, 14552848059, 148234015051, 1604267622731, 18383552327853, 222363321668259, 2831217743661491, 37850593064646771, 530121590756400653
Offset: 0

Views

Author

Paul Barry, Jan 21 2005

Keywords

Comments

Binomial transform of A101474.

Crossrefs

Programs

  • Python
    from itertools import accumulate, islice
    def A101473_gen(): # generator of terms
        blist, a, b = tuple(), 0, 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
            a, b = b, 2*a+b
    A101473_list = list(islice(A101473_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

E.g.f.: (sec(x) + tan(x))*(exp(2*x) - exp(-x))/3.
a(n) = (A000752(n) - A062162(n))/3.
a(n) ~ n! * 2^(n+2) * (exp(Pi) - exp(-Pi/2)) / (3 * Pi^(n+1)). - Vaclav Kotesovec, Jun 12 2015

A102590 Inverse Boustrophedon transform of 2^n.

Original entry on oeis.org

1, 1, 1, 0, -3, -14, -39, -130, -263, -1214, -179, -21810, 98277, -1021214, 8446881, -82814290, 836117617, -9075846014, 103898533141, -1257148371570, 16004750729757, -213975589371614, 2996827456610601, -43880489398997650, 670443584312526697, -10670445866332254014
Offset: 0

Views

Author

Paul Barry, Jan 22 2005

Keywords

Comments

Binomial transform of (-1)^n*A062162.

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(2*x)/(sec(x)+tan(x)), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 29 2013
  • Mathematica
    CoefficientList[Series[Cos[x]*E^(2*x)/(1+Sin[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
  • Python
    from itertools import islice, accumulate
    from operator import sub
    def A102590_gen(): # generator of terms
        blist, m = tuple(), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=m)))[-1]
            m *= 2
    A102590_list = list(islice(A102590_gen(),20)) # Chai Wah Wu, Jun 10 2022

Formula

E.g.f.: exp(2x)/(sec(x)+tan(x)) = cos(x)exp(2x)/(1+sin(x)).
a(n) ~ (-1)^n * n^(n+1/2)*2^(n+5/2)/(Pi^(n+1/2)*exp(n+Pi)). - Vaclav Kotesovec, Sep 29 2013
G.f.: E(0)*x/(x-1)/(1-2*x) + 1/(1-2*x), where E(k) = 1 - x^2*(k+1)*(k+2)/( x^2*(k+1)*(k+2) - 2*(x*(k-1)+1)*(x*k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014

A261880 Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.

Original entry on oeis.org

1, -1, -2, 1, 2, 4, -2, -3, -5, -9, 5, 7, 10, 15, 24, -16, -21, -28, -38, -53, -77, 61, 77, 98, 126, 164, 217, 294, -272, -333, -410, -508, -634, -798, -1015, -1309, 1385, 1657, 1990, 2400, 2908, 3542, 4340, 5355, 6664
Offset: 0

Views

Author

Paul Curtz, Jul 10 2016

Keywords

Comments

Difference array of (-1)^n*A000111(n):
1, -1, 1, -2, 5, ...
-2, 2, -3, 7,...
4, -5, 10, ...
-9, 15, ...
24, ... .
First column:(-1)^n*A000667(n).
Antidiagonal sums: b(n) = 1, -3, 7, -19, 61, -233, 1037, -5279, 30241, ..., i.e., row sums of the triangle.
Any triangle with entries T(n, m) built from some sequence in column m=0, and the recurrence T(n, m) = T(n, m-1) - T(n-1, m-1) for m >= 1, has the property that the new triangle t(n, m) = T(n+1, m+1) - T(n+1, m), 0 <= m <= n, equals -T(n, m). See the question in the example. - Wolfdieter Lang, Aug 08 2016

Examples

			The triangle T(n, m) begins:
n\m  0   1   2   3   4   5 ...
0:   1
1:  -1  -2
2:   1   2   4
3:  -2  -3  -5  -9
4:   5   7  10  15  24,
5: -16 -21 -28 -38 -53 -77
...
Triangle of differences of the row entries of the preceding triangle starting with row n=1:
n\m  0   1    2   3   4 ...
0:  -1
1:   1   2
2:  -1  -2   -4
3:   2   3    5   9
4:  -5  -7  -10 -15 -24
... .
This is the negative of the first triangle. Are there other sequences with the same property?
		

Crossrefs

Formula

Recurrence: T(n, 0) = (-1)^n*A000111(n), n >= 0. T(n, m) = T(n, m-1) - T(n-1, m-1), m >= 1. (from the fact that the differences of the rows, starting with n = 1 produce the negative of the triangle. See the example and a comment). - Wolfdieter Lang, Aug 08 2016

Extensions

Edited by Wolfdieter Lang, Aug 08 2016

A363394 Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, -1, 1, 3, -3, -2, 1, 4, -6, -8, 5, 1, 5, -10, -20, 25, 16, 1, 6, -15, -40, 75, 96, -61, 1, 7, -21, -70, 175, 336, -427, -272, 1, 8, -28, -112, 350, 896, -1708, -2176, 1385, 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936
Offset: 0

Views

Author

Peter Luschny, Jun 06 2023

Keywords

Examples

			The triangle T(n, k) begins:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  -1;
  [3] 1, 3,  -3,   -2;
  [4] 1, 4,  -6,   -8,   5;
  [5] 1, 5, -10,  -20,  25,   16;
  [6] 1, 6, -15,  -40,  75,   96,   -61;
  [7] 1, 7, -21,  -70, 175,  336,  -427,  -272;
  [8] 1, 8, -28, -112, 350,  896, -1708, -2176,  1385;
  [9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936;
		

Crossrefs

Variants (row reversed): A109449, A247453.
Cf. A081658 (signed secant part), A363393 (signed tangent part), A000111 (main diagonal), A122045, A155585 (aerated main diagonal), A000667, A062162 (row sums of signless variant).

Programs

  • Maple
    # Variant, computes abs(T(n, k)):
    P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n):
    seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k == n:
            p = k % 2
            return p - sum(T(n, j) for j in range(p, n - 1, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10): print([T(n, k) for k in range(n + 1)])

Formula

|T(n, k)| = (-1)^(n - k) * n! * [x^(n - k)][y^n] (sec(y) + tan(y)) / exp(x*y).
T(n, k) = [x^(n - k)] -2^(k-(0^k))*(Euler(k, 0) + Euler(k, 1/2)) / (x-1)^(k + 1).
For a recursion see the Python program.
T(n, k) = [x^n] ((-1) + Sum_{j=0..n} binomial(n, j)*(Euler(j, 1) + Euler(j, 1/2))*(2*x)^j). - Peter Luschny, Nov 17 2024
Showing 1-8 of 8 results.