A109449
Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
5, 8, 6, 4, 1;
16, 25, 20, 10, 5, 1;
61, 96, 75, 40, 15, 6, 1;
272, 427, 336, 175, 70, 21, 7, 1;
1385, 2176, 1708, 896, 350, 112, 28, 8, 1;
7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1;
50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, The Swiss-Knife polynomials.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a109449 n k = a109449_row n !! k
a109449_row n = zipWith (*)
(a007318_row n) (reverse $ take (n + 1) a000111_list)
a109449_tabl = map a109449_row [0..]
-- Reinhard Zumkeller, Nov 02 2013
-
f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
[A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
-
From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
(End)
-
lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
-
A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
-
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) :
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_row(n):
x = R.gen()
return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by
Peter Luschny, Jul 10 2009
A062272
Boustrophedon transform of (n+1) mod 2.
Original entry on oeis.org
1, 1, 2, 5, 12, 41, 152, 685, 3472, 19921, 126752, 887765, 6781632, 56126201, 500231552, 4776869245, 48656756992, 526589630881, 6034272215552, 72989204937125, 929327412759552, 12424192360405961, 174008703107274752
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a062272 n = sum $ zipWith (*) (a109449_row n) $ cycle [1,0]
-- Reinhard Zumkeller, Nov 03 2013
-
s[n_] = Mod[n+1, 2]; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import accumulate, islice
def A062272_gen(): # generator of terms
blist, m = tuple(), 0
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
A062272_list = list(islice(A062272_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062272_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == 1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
R.append(A[e*i//2])
return R
A062272_list(10) # Peter Luschny, Jun 02 2012
A062161
Boustrophedon transform of n mod 2.
Original entry on oeis.org
0, 1, 2, 4, 12, 36, 142, 624, 3192, 18256, 116282, 814144, 6219972, 51475776, 458790022, 4381112064, 44625674352, 482962852096, 5534347077362, 66942218896384, 852334810990332, 11394877025289216, 159592488559874302, 2336793875186479104, 35703580441464231912
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform.
-
a062161 n = sum $ zipWith (*) (a109449_row n) $ cycle [0,1]
-- Reinhard Zumkeller, Nov 03 2013
-
With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])Sinh[x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Feb 16 2013 *)
-
from itertools import accumulate, islice
def A062161_gen(): # generator of terms
blist, m = tuple(), 1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
A062161_list = list(islice(A062161_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062161_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == -1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
# print [A[z] for z in (-i//2..i//2)]
R.append(A[e*i//2])
return R
A062161_list(10) # Peter Luschny, Jun 02 2012
A247453
T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0
. 0: 1
. 1: -1 1
. 2: 1 -2 1
. 3: -2 3 -3 1
. 4: 5 -8 6 -4 1
. 5: -16 25 -20 10 -5 1
. 6: 61 -96 75 -40 15 -6 1
. 7: -272 427 -336 175 -70 21 -7 1
. 8: 1385 -2176 1708 -896 350 -112 28 -8 1
. 9: -7936 12465 -9792 5124 -2016 630 -168 36 -9 1
. 10: 50521 -79360 62325 -32640 12810 -4032 1050 -240 45 -10 1 .
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- OEIS Wiki, Boustrophedon transform.
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a247453 n k = a247453_tabl !! n !! k
a247453_row n = a247453_tabl !! n
a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
-
a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}];
T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
-
A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017
A101473
Boustrophedon transform of the Jacobsthal numbers.
Original entry on oeis.org
0, 1, 3, 9, 31, 111, 453, 2059, 10571, 60651, 386253, 2704659, 20661411, 170990691, 1523975053, 14552848059, 148234015051, 1604267622731, 18383552327853, 222363321668259, 2831217743661491, 37850593064646771, 530121590756400653
Offset: 0
-
from itertools import accumulate, islice
def A101473_gen(): # generator of terms
blist, a, b = tuple(), 0, 1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
a, b = b, 2*a+b
A101473_list = list(islice(A101473_gen(),30)) # Chai Wah Wu, Jun 11 2022
A102590
Inverse Boustrophedon transform of 2^n.
Original entry on oeis.org
1, 1, 1, 0, -3, -14, -39, -130, -263, -1214, -179, -21810, 98277, -1021214, 8446881, -82814290, 836117617, -9075846014, 103898533141, -1257148371570, 16004750729757, -213975589371614, 2996827456610601, -43880489398997650, 670443584312526697, -10670445866332254014
Offset: 0
-
a:= n-> n!*coeff(series(exp(2*x)/(sec(x)+tan(x)), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 29 2013
-
CoefficientList[Series[Cos[x]*E^(2*x)/(1+Sin[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
-
from itertools import islice, accumulate
from operator import sub
def A102590_gen(): # generator of terms
blist, m = tuple(), 1
while True:
yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=m)))[-1]
m *= 2
A102590_list = list(islice(A102590_gen(),20)) # Chai Wah Wu, Jun 10 2022
A261880
Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.
Original entry on oeis.org
1, -1, -2, 1, 2, 4, -2, -3, -5, -9, 5, 7, 10, 15, 24, -16, -21, -28, -38, -53, -77, 61, 77, 98, 126, 164, 217, 294, -272, -333, -410, -508, -634, -798, -1015, -1309, 1385, 1657, 1990, 2400, 2908, 3542, 4340, 5355, 6664
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: -1 -2
2: 1 2 4
3: -2 -3 -5 -9
4: 5 7 10 15 24,
5: -16 -21 -28 -38 -53 -77
...
Triangle of differences of the row entries of the preceding triangle starting with row n=1:
n\m 0 1 2 3 4 ...
0: -1
1: 1 2
2: -1 -2 -4
3: 2 3 5 9
4: -5 -7 -10 -15 -24
... .
This is the negative of the first triangle. Are there other sequences with the same property?
A363394
Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 2, -1, 1, 3, -3, -2, 1, 4, -6, -8, 5, 1, 5, -10, -20, 25, 16, 1, 6, -15, -40, 75, 96, -61, 1, 7, -21, -70, 175, 336, -427, -272, 1, 8, -28, -112, 350, 896, -1708, -2176, 1385, 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936
Offset: 0
The triangle T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, -1;
[3] 1, 3, -3, -2;
[4] 1, 4, -6, -8, 5;
[5] 1, 5, -10, -20, 25, 16;
[6] 1, 6, -15, -40, 75, 96, -61;
[7] 1, 7, -21, -70, 175, 336, -427, -272;
[8] 1, 8, -28, -112, 350, 896, -1708, -2176, 1385;
[9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936;
-
# Variant, computes abs(T(n, k)):
P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n):
seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9);
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k == 0: return 1
if k == n:
p = k % 2
return p - sum(T(n, j) for j in range(p, n - 1, 2))
return (T(n - 1, k) * n) // (n - k)
for n in range(10): print([T(n, k) for k in range(n + 1)])
Showing 1-8 of 8 results.
Comments