cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009927 Coordination sequence for Cr3Si, Si position.

Original entry on oeis.org

1, 12, 50, 120, 218, 344, 546, 728, 902, 1212, 1526, 1784, 2154, 2552, 2954, 3432, 3854, 4340, 4998, 5504, 6002, 6768, 7442, 8024, 8814, 9572, 10334, 11232, 11978, 12824, 13938, 14768, 15590, 16812, 17846, 18752, 19962, 21080, 22202, 23520
Offset: 0

Views

Author

Keywords

References

  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (223) cP8.

Formula

G.f.: (1+12*x+51*x^2+130*x^3+243*x^4+350*x^5+450*x^6+418*x^7 +327*x^8+182*x^9+51*x^10+16*x^11-7*x^12+8*x^13+12*x^14)/ ((1+x)*(1+x^2)^2*(1+x+x^2)^2*(1-x)^3). - Robert Israel, Dec 18 2015
Empirical: a(n) = (1903/72) + (3/8)*(-1)^n + 19*KroneckerDelta[n,0] - 8*KroneckerDelta[n,1] - 12*KroneckerDelta[n,2] + ((n+1)/12)*(187*n-273) - (32*sqrt(3)/27)*((13/2)*cos((4n+1)*Pi/6) + sin(2n*Pi/3)) - (3*sqrt(26)/2)*(-1)^n*cos(n*Pi/2 + arctan(1/5)) - (3/4)*i^n*(1+(-1)^n)*(n+2). - G. C. Greubel, Dec 18 2015
G.f.: (1 + 12*x + 50*x^2 + 118*x^3 + 192*x^4 + 220*x^5 + 207*x^6 + 68*x^7-123*x^8-236*x^9-276*x^10-166*x^11-58*x^12-8*x^13 + 19*x^14-8*x^15-12*x^16) / (1-x^3)^2 / (1-x^4)^2. - Sean A. Irvine, Mar 15 2018