cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009999 Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 8, 1, 1, 5, 16, 27, 16, 1, 1, 6, 25, 64, 81, 32, 1, 1, 7, 36, 125, 256, 243, 64, 1, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of ways of placing 1..k in n boxes such that each box contains at most one number, and numbers in adjacent boxes are in increasing order. This can be proved by observing that there are n-(k-1) ways of extending each of T(n-1,k-1). - Jimin Park, Apr 16 2023
The n-th diagonal consists of n^k. This can also be generated as the Akiyama-Tanigawa algorithm applied to the sequence binomial(n+k,k). - Shel Kaphan, May 03 2024

Examples

			Triangle begins
  1
  1  1
  1  2  1
  1  3  4   1
  1  4  9   8    1
  1  5 16  27   16    1
  1  6 25  64   81   32     1
  1  7 36 125  256  243    64     1
  1  8 49 216  625 1024   729   128    1
  1  9 64 343 1296 3125  4096  2187  256   1
  1 10 81 512 2401 7776 15625 16384 6561 512 1
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.

Crossrefs

Row sums give A026898.
T(2n,n) gives A000169(n+1).
Cf. A009998 (mirrored).

Programs

  • Haskell
    a009999 n k = (n + 1 - k) ^ k
    a009999_row n = a009999_tabl !! n
    a009999_tabl = [1] : map snd (iterate f ([1,1], [1,1])) where
       f (us@(u:_), vs) = (us', 1 : zipWith (*) us' vs)
                          where us' = (u + 1) : us
    -- Reinhard Zumkeller, Feb 02 2014
  • Maple
    A009999 := proc(i,j) (i+1-j)^j ; end proc: # R. J. Mathar, Jan 16 2011
  • Mathematica
    Table[(i+1-j)^j, {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

Formula

T(n,0) = 1; T(n,k) = (n-k+1)*T(n-1,k-1) for k=1..n. - Reinhard Zumkeller, Feb 02 2014
T(n,k) = Sum_{i=0..k} binomial(k,i)*T(n-1-i,k-i). - Jimin Park, Apr 16 2023

Extensions

T(10,8) corrected by Reinhard Zumkeller, Feb 02 2014