A009999 Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 8, 1, 1, 5, 16, 27, 16, 1, 1, 6, 25, 64, 81, 32, 1, 1, 7, 36, 125, 256, 243, 64, 1, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1
Offset: 0
Examples
Triangle begins 1 1 1 1 2 1 1 3 4 1 1 4 9 8 1 1 5 16 27 16 1 1 6 25 64 81 32 1 1 7 36 125 256 243 64 1 1 8 49 216 625 1024 729 128 1 1 9 64 343 1296 3125 4096 2187 256 1 1 10 81 512 2401 7776 15625 16384 6561 512 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Haskell
a009999 n k = (n + 1 - k) ^ k a009999_row n = a009999_tabl !! n a009999_tabl = [1] : map snd (iterate f ([1,1], [1,1])) where f (us@(u:_), vs) = (us', 1 : zipWith (*) us' vs) where us' = (u + 1) : us -- Reinhard Zumkeller, Feb 02 2014
-
Maple
A009999 := proc(i,j) (i+1-j)^j ; end proc: # R. J. Mathar, Jan 16 2011
-
Mathematica
Table[(i+1-j)^j, {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Formula
T(n,0) = 1; T(n,k) = (n-k+1)*T(n-1,k-1) for k=1..n. - Reinhard Zumkeller, Feb 02 2014
T(n,k) = Sum_{i=0..k} binomial(k,i)*T(n-1-i,k-i). - Jimin Park, Apr 16 2023
Extensions
T(10,8) corrected by Reinhard Zumkeller, Feb 02 2014
Comments