A010018 a(0) = 1, a(n) = 28*n^2 + 2 for n>0.
1, 30, 114, 254, 450, 702, 1010, 1374, 1794, 2270, 2802, 3390, 4034, 4734, 5490, 6302, 7170, 8094, 9074, 10110, 11202, 12350, 13554, 14814, 16130, 17502, 18930, 20414, 21954, 23550, 25202, 26910, 28674, 30494, 32370, 34302, 36290, 38334, 40434, 42590, 44802
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A206399.
Programs
-
Mathematica
Join[{1}, 28 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *) LinearRecurrence[{3, -3, 1}, {1, 30, 114, 254}, 40] (* Robert G. Wilson v, Jul 06 2013 *)
Formula
G.f.: (1+x)*(1+26*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*28+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(14)/56*Pi*coth(Pi/sqrt 14) = 1.05615979263340... - R. J. Mathar, May 07 2024
a(n) = 2*A158482(n), n>0. - R. J. Mathar, May 07 2024
Comments