A010029 Irregular triangle read by rows: T(n,k) (n>=1, 0 <= k <= floor(n/2)) = number of permutations of 1..n with exactly floor(n/2) - k runs of consecutive pairs up.
1, 1, 1, 3, 3, 1, 12, 11, 11, 56, 53, 3, 87, 321, 309, 53, 693, 2175, 2119, 11, 680, 5934, 17008, 16687, 309, 8064, 55674, 150504, 148329, 53, 5805, 96370, 572650, 1485465, 1468457, 2119, 95575
Offset: 1
Examples
Triangle begins 1 1 1 3 3 1 12 11 11 56 53 3 87 321 309 53 693 2175 2119 11 680 5934 17008 16687 309 8064 55674 150504 148329 53 5805 96370 572650 1485465 1468457 2119 95575 ... ...
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.1.
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
Crossrefs
Programs
-
Maple
A010029 := proc(n,k) add( x^i*( ((1-y)*x-1)/((1-y)*x^2-1) )^i*i!,i=0..n+1) ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,floor(n/2)-k) ; end proc: seq(seq( A010029(n,k),k=0..floor(n/2)),n=1..12) ; # R. J. Mathar, Jul 01 2022
-
Mathematica
max = 16; coes = CoefficientList[ Series[ Sum[ n!*(((1 - y)*x^2 - x)/((1 - y)*x^2 - 1))^n, {n, 0, max}], {x, 0, max}, {y, 0, max}], {x, y}]; Table[ Table[ coes[[n, k]] , {k, 1, Floor[(n + 1)/2]}] // Reverse, {n, 2, max - 4}] // Flatten (* Jean-François Alcover, Jan 10 2013, after Vladeta Jovovic *)
Formula
G.f.: Sum_{n>=0} n! *( ((1-y)*x^2-x)/((1-y)*x^2-1) )^n, for the triangle read right-to-left. - Vladeta Jovovic, Nov 21 2007
T(n,k) = A136123(n,[n/2]-k). - R. J. Mathar, Jul 01 2022