cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136123 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k maximal strings of increasing consecutive integers (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 11, 12, 1, 53, 56, 11, 309, 321, 87, 3, 2119, 2175, 693, 53, 16687, 17008, 5934, 680, 11, 148329, 150504, 55674, 8064, 309, 1468457, 1485465, 572650, 96370, 5805, 53, 16019531, 16170035, 6429470, 1200070, 95575, 2119
Offset: 0

Views

Author

Emeric Deutsch and Vladeta Jovovic, Dec 17 2007

Keywords

Comments

Row n has 1+floor(n/2) terms. Row sums are the factorials (A000142). Column 0 yields A000255. Column 1 yields A001277. Column 2 yields A001278. Column 3 yields A001279. Column 4 yields A001280. Sum(k*T(n,k),k>=0)=(n-2)!*(n^2 - 3n + 3)=A001564(n-2).

Examples

			T(3,0)=3 because we have 132, 213 and 321; T(6,3)=3 because we have 125634, 341256, 563412.
Triangle starts:
    1;
    1;
    1,   1;
    3,   3;
   11,  12,  1;
   53,  56, 11;
  309, 321, 87, 3;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.1.

Crossrefs

Programs

  • Maple
    G:=Sum(factorial(n)*(((1-t)*x^2-x)/((1-t)*x^2-1))^n, n=0..infinity): Gser:= simplify(series(G,x=0,13)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,x,n)) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
    # alternative
    A136123 := proc(n,k)
        add( x^i*( ((1-y)*x-1)/((1-y)*x^2-1) )^i*i!,i=0..n+1) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    seq(seq( A136123(n,k),k=0..floor(n/2)),n=0..12) ; # R. J. Mathar, Jul 01 2022
  • Mathematica
    T[n_, k_] := Sum[x^i*(((1-y)*x-1)/((1-y)*x^2-1))^i*i!, {i, 0, n+1}] //
       SeriesCoefficient[#, {x, 0, n}]& //
       SeriesCoefficient[#, {y, 0, k}]&;
    Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)

Formula

G.f.: G(x,t) = Sum_{n>=0} n!*(((1-t)*x^2 - x)/((1-t)*x^2-1))^n. - Vladeta Jovovic

A010030 Irregular triangle read by rows: T(n,k) (n >= 1, 0 <= k <= [n/2]) = number of permutations of 1..n with [n/2]-k runs of consecutive pairs up and down (divided by 2).

Original entry on oeis.org

1, 1, 0, 3, 0, 3, 8, 1, 25, 28, 7, 17, 155, 143, 45, 259, 1005, 933, 323, 131, 2770, 7488, 7150, 2621, 3177, 27978, 64164, 62310, 23811, 1281, 51433, 294602, 619986, 607445, 239653
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
1,
1, 0,
3, 0,
3, 8, 1,
25, 28, 7,
17, 155, 143, 45,
259, 1005, 933, 323,
131, 2770, 7488, 7150, 2621,
3177, 27978, 64164, 62310, 23811,
1281, 51433, 294602, 619986, 607445, 239653,
...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264.

Crossrefs

Formula

G.f. for number of permutations of 1..n by number of runs of consecutive pairs up and down is Sum(n!*(((1-y)*(2*x^2-x^3)-x)/((1-y)*x^2-1))^n,n = 0 .. infinity), cf. A010029. - Vladeta Jovovic, Nov 23 2007

Extensions

More terms from Vladeta Jovovic, Nov 23 2007
Entry revised by N. J. A. Sloane, Apr 14 2014
Showing 1-2 of 2 results.