cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000239 One-half of number of permutations of [n] with exactly one run of adjacent symbols differing by 1.

Original entry on oeis.org

1, 1, 3, 8, 28, 143, 933, 7150, 62310, 607445, 6545935, 77232740, 989893248, 13692587323, 203271723033, 3223180454138, 54362625941818, 971708196867905, 18347779304380995, 364911199401630640, 7624625589633857940, 166977535317365068775, 3824547112283439914893, 91440772473772839055238
Offset: 1

Views

Author

Keywords

Comments

First differences seem to be in A000130. - Ralf Stephan, Aug 28 2003

Examples

			The permutation 3 2 1 4 5 7 6 has three such runs: 3-2-1, 4-5 and 7-6.
For n<=3 all permutations have one such run. For n=4, 16 have one run, two have no such runs (2413 and 3142), and 6 have two runs (1243, 2134, 2143, 3412, 3421), so a(4) = 16/2 = 8.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

This is a diagonal of the irregular triangle in A010030.

Programs

  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], (n+1-t)* S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]; A000239 = Join[{1}, Table[Coefficient[S[n], t, 1]/2, {n, 1, 20}] // Accumulate // Rest] (* Jean-François Alcover, Feb 06 2016, from successive accumulation of A000130 *)

Extensions

Entry revised by N. J. A. Sloane, Apr 14 2014
More terms from Jean-François Alcover, Feb 06 2016

A000544 Number of permutations of length n by rises.

Original entry on oeis.org

3, 25, 155, 1005, 7488, 64164, 619986, 6646750, 78161249, 999473835, 13801761213, 204631472475, 3241541125110, 54629642149630, 975867376041308, 18416844056075364, 366128842105397631, 7647337600268371485, 167424323805645018159, 3833790834030516355705, 91641405910147125954428, 2282611988081527293910920
Offset: 4

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010030.

Programs

  • Mathematica
    max = 22; s = Sum[k*k!*(x^2-x+k-1)*(-x*(x-1)/(x+1))^k, {k, 1, max+1}]/(x- x^2-x^3+x^4)^2 + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: x^2*Sum_{k>=0} k*k!*(x^2-x+k-1)*(-x*(x-1)/(x+1))^k/((x^2-1)^2*(x-1)^2).

Extensions

More terms from Vladeta Jovovic, Nov 23 2007
Generating function from Sean A. Irvine, Nov 18 2010

A001282 Number of permutations of length n by rises.

Original entry on oeis.org

17, 259, 2770, 27978, 294602, 3331790, 40682144, 535206440, 7557750635, 114101726625, 1834757172082, 31313852523634, 565434670633580, 10771030900532868, 215881317066455232, 4541623615098815280
Offset: 6

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010030.

Extensions

More terms from Vladeta Jovovic, Nov 23 2007
Showing 1-3 of 3 results.