A010030 Irregular triangle read by rows: T(n,k) (n >= 1, 0 <= k <= [n/2]) = number of permutations of 1..n with [n/2]-k runs of consecutive pairs up and down (divided by 2).
1, 1, 0, 3, 0, 3, 8, 1, 25, 28, 7, 17, 155, 143, 45, 259, 1005, 933, 323, 131, 2770, 7488, 7150, 2621, 3177, 27978, 64164, 62310, 23811, 1281, 51433, 294602, 619986, 607445, 239653
Offset: 1
Examples
Triangle begins: 1, 1, 0, 3, 0, 3, 8, 1, 25, 28, 7, 17, 155, 143, 45, 259, 1005, 933, 323, 131, 2770, 7488, 7150, 2621, 3177, 27978, 64164, 62310, 23811, 1281, 51433, 294602, 619986, 607445, 239653, ...
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264.
Formula
G.f. for number of permutations of 1..n by number of runs of consecutive pairs up and down is Sum(n!*(((1-y)*(2*x^2-x^3)-x)/((1-y)*x^2-1))^n,n = 0 .. infinity), cf. A010029. - Vladeta Jovovic, Nov 23 2007
Extensions
More terms from Vladeta Jovovic, Nov 23 2007
Entry revised by N. J. A. Sloane, Apr 14 2014