cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010030 Irregular triangle read by rows: T(n,k) (n >= 1, 0 <= k <= [n/2]) = number of permutations of 1..n with [n/2]-k runs of consecutive pairs up and down (divided by 2).

Original entry on oeis.org

1, 1, 0, 3, 0, 3, 8, 1, 25, 28, 7, 17, 155, 143, 45, 259, 1005, 933, 323, 131, 2770, 7488, 7150, 2621, 3177, 27978, 64164, 62310, 23811, 1281, 51433, 294602, 619986, 607445, 239653
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
1,
1, 0,
3, 0,
3, 8, 1,
25, 28, 7,
17, 155, 143, 45,
259, 1005, 933, 323,
131, 2770, 7488, 7150, 2621,
3177, 27978, 64164, 62310, 23811,
1281, 51433, 294602, 619986, 607445, 239653,
...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264.

Crossrefs

Formula

G.f. for number of permutations of 1..n by number of runs of consecutive pairs up and down is Sum(n!*(((1-y)*(2*x^2-x^3)-x)/((1-y)*x^2-1))^n,n = 0 .. infinity), cf. A010029. - Vladeta Jovovic, Nov 23 2007

Extensions

More terms from Vladeta Jovovic, Nov 23 2007
Entry revised by N. J. A. Sloane, Apr 14 2014