cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010047 High-temperature expansion of Ising model susceptibility chi_4 for 4-d cubic lattice.

Original entry on oeis.org

2, 64, 2336, 99328, 4840832, 267080704, 16467255296, 1123220758528, 83995566282752, 6835730843582464, 601493660302278656, 56912420061511548928, 5762378580637148905472, 621705383408527748890624, 71206666963479522492809216
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010557, A010041 (chi_2), A010044 (mu_2), A010045 (square), A010046 (cubic).

Formula

E.g.f.: 2*F(tanh(x)), where F(x) is the g.f. of A010557. - Andrey Zabolotskiy, Nov 19 2024

A010556 High temperature series for spin-1/2 Ising magnetic susceptibility on 4D simple cubic lattice.

Original entry on oeis.org

1, 8, 56, 392, 2696, 18536, 126536, 863720, 5873768, 39942184, 271009112, 1838725896, 12457092504, 84392312392, 571140732808, 3865210690888, 26138072412040, 176752645426600, 1194553221342296, 8073068110703880, 54534614510976680
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

Crossrefs

Cf. A002906 (2D), A002913 (3D), A010579 (5D), A010580 (6D), A030008 (7D).

Extensions

a(17) corrected (was 176752645540264), a(18)-a(20) added using Butera & Pernici's formulas by Andrey Zabolotskiy, Aug 08 2022

A010040 High-temperature expansion of Ising model susceptibility chi_2 for cubic lattice.

Original entry on oeis.org

1, 6, 60, 888, 16944, 403296, 11342400, 371718528, 13814409984, 577113570816, 26660675466240, 1354001083680768, 74774085533159424, 4471493494982516736, 287295290091420794880, 19770508871470350532608, 1448690057046948138123264, 112756550398510017376813056
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002913, A010039 (square), A010041 (4D cubic), A010043 (mu_2), A010046 (chi_4), A002170 (Heisenberg).

Formula

E.g.f.: F(tanh(x)), where F(x) is the g.f. of A002913. - Andrey Zabolotskiy, Nov 19 2024

Extensions

Name clarified, terms a(15) and beyond using data from A002913 added by Andrey Zabolotskiy, Nov 25 2024
Showing 1-3 of 3 results.