cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010556 High temperature series for spin-1/2 Ising magnetic susceptibility on 4D simple cubic lattice.

Original entry on oeis.org

1, 8, 56, 392, 2696, 18536, 126536, 863720, 5873768, 39942184, 271009112, 1838725896, 12457092504, 84392312392, 571140732808, 3865210690888, 26138072412040, 176752645426600, 1194553221342296, 8073068110703880, 54534614510976680
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

Crossrefs

Cf. A002906 (2D), A002913 (3D), A010579 (5D), A010580 (6D), A030008 (7D).

Extensions

a(17) corrected (was 176752645540264), a(18)-a(20) added using Butera & Pernici's formulas by Andrey Zabolotskiy, Aug 08 2022

A010046 High-temperature expansion of Ising model susceptibility chi_4 for cubic lattice.

Original entry on oeis.org

2, 48, 1272, 38784, 1341408, 52186368, 2256454272, 107494477824, 5595152936448, 316081923944448, 19262189406185472, 1259828274265227264, 88026828815690047488, 6544693787367160086528, 515907116666737635459072, 42981965201161894878511104, 3773829205951827807017238528
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010045 (square), A010047 (4D cubic), A010040 (chi_2, see also A002913), A010043 (mu_2).

Extensions

Name clarified, a(14)-a(16) using Butera & Pernici's formulas added by Andrey Zabolotskiy, Nov 25 2024

A010041 High-temperature expansion of Ising model susceptibility chi_2 for 4-d cubic lattice.

Original entry on oeis.org

1, 8, 112, 2336, 63808, 2177408, 88532992, 4198893056, 226756461568, 13774782507008, 927722457014272, 68724458864869376, 5545864378385072128, 484804579241630302208, 45594217495265300119552, 4594089494167496649015296, 493393425754870454072639488, 56299361591526976658442027008
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010556, A010039 (square), A010040 (cubic), A010044 (mu_2), A010047 (chi_4).

Formula

E.g.f.: F(tanh(x)), where F(x) is the g.f. of A010556. - Andrey Zabolotskiy, Nov 19 2024

Extensions

Name clarified, terms a(15)-a(17) using data from A010556 added by Andrey Zabolotskiy, Nov 25 2024

A010045 High-temperature expansion of Ising model susceptibility chi_4 for square lattice.

Original entry on oeis.org

2, 32, 528, 9728, 197568, 4424192, 108461568, 2895515648, 83657776128, 2602257293312, 86733041246208, 3084465770528768, 116595295651135488, 4668952802696364032, 197452751427562242048, 8794599595709419225088, 411518238008892605595648, 20183379315419545025380352
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010046 (cubic), A010047 (4D cubic), A010039 (chi_2, see also A002906), A010042 (mu_2).

Extensions

Name clarified, a(15)-a(17) using Butera & Pernici's formulas added by Andrey Zabolotskiy, Nov 25 2024

A010557 Fourth-field derivative of Ising model free energy for 4-d cubic lattice.

Original entry on oeis.org

1, 32, 584, 8288, 101240, 1121120, 11570360, 113293088, 1064631032, 9681082144, 85688330696, 741562925664, 6296196525768, 52589092312288, 433044168426616, 3521747918221984, 28326976016327032, 225625290109912096, 1781402824552864712, 13954143265951219296, 108525895871787179576
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

Name clarified, a(17)-a(20) using Butera & Pernici's formulas added by Andrey Zabolotskiy, Nov 25 2024

A010367 High-temperature spin-1/2 Ising model series for second derivative of susceptibility with respect to magnetic field for hyper-body-centered-cubic lattice.

Original entry on oeis.org

2, 128, 9792, 886784, 92722944, 11014965248, 1465369976832, 215937597784064, 34916329300783104, 6147843514432913408, 1170908043876450435072
Offset: 1

Views

Author

Keywords

Comments

Moore defines two four-dimensional lattices called hbcc ("hyper-body-centered-cubic") and hfcc. They have essentially the same arrangement of sites, up to a similarity transformation. (That set of sites forms the D_4 lattice.) However the sets of bonds are different: each site of hfcc is connected to all 24 of its nearest neighbors, while each site of hbcc is connected only to 16 of them, specifically those which have relative position vector (+-1, +-1, +-1, +-1), but not (+-2, 0, 0, 0) or its permutations. - Andrey Zabolotskiy, Nov 26 2024

Crossrefs

Extensions

Edited by Andrey Zabolotskiy, Aug 01 2022 and Nov 26 2024
Showing 1-6 of 6 results.