A010055 1 if n is a prime power p^k (k >= 0), otherwise 0.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for characteristic functions
Crossrefs
Programs
-
Haskell
a010055 n = if a001221 n <= 1 then 1 else 0 -- Reinhard Zumkeller, Nov 28 2015, Mar 19 2013, Nov 17 2011
-
Maple
A010055 := proc(n) if n =1 then 1; else if nops(ifactors(n)[2]) = 1 then 1; else 0 ; end if; end if; end proc: # R. J. Mathar, May 25 2017
-
Mathematica
A010055[n_]:=Boole[PrimeNu[n]<=1]; A010055/@Range[20] (* Enrique Pérez Herrero, May 30 2011 *) {1}~Join~Table[Boole@ PrimePowerQ@ n, {n, 2, 105}] (* Michael De Vlieger, Feb 02 2016 *)
-
PARI
for(n=1,120,print1(omega(n)<=1,","))
-
Python
from sympy import primefactors def A010055(n): return int(len(primefactors(n)) <= 1) # Chai Wah Wu, Mar 31 2023
Formula
Dirichlet generating function: 1 + ppzeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = 0^(A119288(n)-1). - Reinhard Zumkeller, May 13 2006
a(n) = if A001221(n) <= 1 then 1, otherwise 0. - Reinhard Zumkeller, Nov 28 2015
If n >= 2, a(n) = A069513(n). - Jeppe Stig Nielsen, Feb 02 2016
Conjecture: a(n) = (n - A048671(n))/A000010(n) for all n > 1. - Velin Yanev, Mar 10 2021 [The conjecture is true. - Andrey Zabolotskiy, Mar 11 2021]
Extensions
More terms from Charles R Greathouse IV, Mar 12 2008
Edited by Daniel Forgues, Mar 02 2009
Comment re Galois fields moved to A069513 by Franklin T. Adams-Watters, Nov 02 2009
Comments