A355817 Dirichlet inverse of A010055, characteristic function of powers of primes.
1, -1, -1, 0, -1, 2, -1, 0, 0, 2, -1, -1, -1, 2, 2, 0, -1, -1, -1, -1, 2, 2, -1, 0, 0, 2, 0, -1, -1, -6, -1, 0, 2, 2, 2, 2, -1, 2, 2, 0, -1, -6, -1, -1, -1, 2, -1, 0, 0, -1, 2, -1, -1, 0, 2, 0, 2, 2, -1, 6, -1, 2, -1, 0, 2, -6, -1, -1, 2, -6, -1, -1, -1, 2, -1, -1, 2, -6, -1, 0, 0, 2, -1, 6, 2, 2, 2, 0, -1, 6, 2
Offset: 1
Keywords
Links
Programs
-
Mathematica
s[n_] := If[PrimeNu[n] < 2, 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
A010055(n) = ((1==n)||isprimepower(n)); memoA355817 = Map(); A355817(n) = if(1==n,1,my(v); if(mapisdefined(memoA355817,n,&v), v, v = -sumdiv(n,d,if(d
A010055(n/d)*A355817(d),0)); mapput(memoA355817,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA010055(n/d) * a(d).
Comments