A010079 Coordination sequence for net formed by holes in D_4 lattice.
1, 16, 104, 344, 792, 1528, 2632, 4152, 6200, 8792, 12072, 16024, 20824, 26424, 33032, 40568, 49272, 59032, 70120, 82392, 96152, 111224, 127944, 146104, 166072, 187608, 211112, 236312, 263640, 292792, 324232, 357624, 393464, 431384, 471912, 514648, 560152
Offset: 0
References
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for sequences related to D_4 lattice
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Maple
f := n-> if n mod 2 = 0 then 12*n^3+8*n-8 else 12*n^3+4*n+8; fi; #(for n>1).
-
Mathematica
CoefficientList[Series[-(8 x^7 - 25 x^6 + 2 x^5 - 63 x^4 - 124 x^3 - 71 x^2 - 14 x-1)/((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *) LinearRecurrence[{2,1,-4,1,2,-1},{1,16,104,344,792,1528,2632,4152},40] (* Harvey P. Dale, Nov 08 2017 *)
Formula
a(n) = 2*(-4*(-1)^n+(3+(-1)^n)*n+6*n^3) for n>1. G.f.: -(8*x^7 -25*x^6 +2*x^5 -63*x^4 -124*x^3 -71*x^2 -14*x -1) / ((x-1)^4*(x+1)^2). - Colin Barker, Jul 07 2013
Extensions
More terms from Colin Barker, Jul 07 2013