A010086 Weight distribution of d=3 Hamming code of length 31.
1, 0, 0, 155, 1085, 5208, 22568, 82615, 247845, 628680, 1383096, 2648919, 4414865, 6440560, 8280720, 9398115, 9398115, 8280720, 6440560, 4414865, 2648919, 1383096, 628680, 247845, 82615, 22568, 5208, 1085, 155, 0, 0, 1
Offset: 0
Examples
Weight distribution: i A_i 0 1 3 155 4 1085 5 5208 6 22568 7 82615 8 247845 9 628680 10 1383096 11 2648919 12 4414865 13 6440560 14 8280720 15 9398115 16 9398115 17 8280720 18 6440560 19 4414865 20 2648919 21 1383096 22 628680 23 247845 24 82615 25 22568 26 5208 27 1085 28 155 31 1
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.
Links
- M. Terada, J. Asatani and T. Koumoto, Weight Distribution
- List of weight distributions
Crossrefs
Row 5 of A340030.
Programs
-
Mathematica
m:=31; RecurrenceTable[{a[n]==(Binomial[m,n-1]-a[n-1]-(m-n+2)*a[n-2])/n, a[0]==1,a[1]==0}, a, {n,0,127}] (* Georg Fischer, Apr 14 2020 *)
-
PARI
Vecrev((1+x)^31 + 31*(1-x)*(1-x^2)^15)/32 \\ Andrew Howroyd, Jan 11 2021
Formula
Recurrence: a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 31. - Georg Fischer, Apr 14 2020