cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010094 Triangle of Euler-Bernoulli or Entringer numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 2, 16, 16, 14, 10, 5, 61, 61, 56, 46, 32, 16, 272, 272, 256, 224, 178, 122, 61, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385, 50521, 50521, 49136, 46366, 42272, 36976, 30656, 23536, 15872, 7936, 353792
Offset: 1

Views

Author

Keywords

Comments

T(n, k) is the number of up-down permutations of n starting with k where 1 <= k <= n. - Michael Somos, Jan 20 2020

Examples

			From _Vincenzo Librandi_, Aug 13 2013: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    4,    2;
    16,   16,   14,   10,    5;
    61,   61,   56,   46,   32,   16;
   272,  272,  256,  224,  178,  122,   61;
  1385, 1385, 1324, 1202, 1024,  800,  544,  272;
  7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385;
  ... (End)
Up-down permutations for n = 4 are k = 1: 1324, 1423; k = 2: 2314, 2413; k = 3: 3411; k = 4: none. - _Michael Somos_, Jan 20 2020
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.

Crossrefs

Columns k=1,3-4 give: A000111, A006212, A006213.
Row sums give A000111(n+1).
Cf. A008282.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    T:= (n, k)-> b(n-k+1, k-1):
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jun 03 2020
  • Mathematica
    e[0, 0] = 1; e[, 0] = 0; e[n, k_] := e[n, k] = e[n, k-1] + e[n-1, n-k]; Join[{1}, Table[e[n, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten] (* Jean-François Alcover, Aug 13 2013 *)
  • PARI
    {T(n, k) = if( n < 1 || k >= n, k == 1 && n == 1, T(n, k+1) + T(n-1, n-k))}; /* Michael Somos, Jan 20 2020 */

Formula

T(1, 1) = 1; T(n, n) = 0 if n > 1; T(n, k) = T(n, k+1) + T(n-1, n-k) if 1 <= k < n. - Michael Somos, Jan 20 2020

Extensions

More terms from Will Root (crosswind(AT)bright.net), Oct 08 2001
Irregular zeroth row deleted by N. J. A. Sloane, Jun 04 2020