A010101 Maximal size of binary code of length n and asymmetric distance 2.
1, 2, 2, 4, 6, 12, 18, 36, 62
Offset: 1
References
- S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.
- T. Etzion, New lower bounds for asymmetric and unidirectional codes, IEEE Trans. Inform. Theory, 37 (1991), 1696-1705.
- J. H. Weber, Bounds and Constructions for Binary Block Codes Correcting Asymmetric or Unidirectional Errors, Ph. D. Thesis, Tech. Univ. Delft, 1989.
- J. H. Weber, C. de Vroedt and D. E. Boekee, Bounds and constructions for binary codes of length less than 24 and asymmetric distance less than 6, IEEE Trans. Inform. Theory, 34 (1988), 1321-1332.
Links
- Tuvi Etzion and Patric R. J. Östergård, Greedy and heuristic algorithms for codes and colorings, IEEE Transactions on Information Theory, 44 (1998), 382-388, [Wayback Machine copy].
- N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs
Comments