A010330 Numbers k such that C(k,3) = C(x,3) + C(y,3) is solvable.
6, 17, 57, 60, 76, 111, 112, 121, 142, 177, 247, 296, 420, 437, 454, 476, 494, 530, 537, 552, 564, 590, 646, 690, 704, 716, 742, 749, 755, 820, 870, 910, 920, 1100, 1160, 1222, 1243, 1430, 1436, 1446, 1452, 1647, 1710, 1740, 1788, 1870, 2172, 2185, 2222, 2258
Offset: 1
Examples
C(10,3) + C(16,3) = C(17,3) = 680, so 17 is a term.
References
- J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- Van der Poorten, Notes on Fermat's Last Theorem, Wiley, p. 122.
Links
- T. D. Noe, Table of n, a(n) for n = 1..463 (n < 10^6)
Programs
-
Haskell
a010330 = (+ 2) . a002311 -- Reinhard Zumkeller, May 02 2014
-
Mathematica
f[n_]:=Reduce[1 < x <= y < n && n(n-1)(n-2) == x(x-1)(x-2) + y(y-1)(y-2), {x,y}, Integers]; Select[Range[2260], (f[#] =!= False)&] (* Jean-François Alcover, Mar 30 2011 *)
Formula
a(n) = A002311(n) + 2. - Reinhard Zumkeller, May 02 2014
Extensions
More terms from David W. Wilson
Comments