cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002311 Numbers k such that the k-th tetrahedral number is the sum of 2 tetrahedral numbers.

Original entry on oeis.org

4, 15, 55, 58, 74, 109, 110, 119, 140, 175, 245, 294, 418, 435, 452, 474, 492, 528, 535, 550, 562, 588, 644, 688, 702, 714, 740, 747, 753, 818, 868, 908, 918, 1098, 1158, 1220, 1241, 1428, 1434, 1444, 1450, 1645, 1708, 1738, 1786, 1868, 2170, 2183, 2220, 2256
Offset: 1

Views

Author

Keywords

Comments

Indices of A034404. - Harvey P. Dale, Jul 25 2011

References

  • Aviezri S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a002311 n = a002311_list !! (n-1)
    a002311_list = filter f [1..] where
       f x = not $ null $ intersect txs $ map (tx -) $ txs where
           txs = takeWhile (< tx) a000292_list; tx = a000292 x
    -- Reinhard Zumkeller, May 02 2014
  • Mathematica
    With[{tetras=Binomial[Range[1100]+2,3]},Flatten[Position[tetras,#]&/@ Union[Select[Total/@Tuples[tetras,2],MemberQ[tetras,#]&]]]] (* Harvey P. Dale, Jul 26 2011 *)

Formula

a(n) = A010330(n) - 2. - Reinhard Zumkeller, May 02 2014

A034404 Values of C(n,3) which can be written as C(x,3) + C(y,3).

Original entry on oeis.org

20, 680, 29260, 34220, 70300, 221815, 227920, 287980, 467180, 908600, 2481115, 4278680, 12259940, 13813570, 15493204, 17861900, 19970444, 24672560, 25665020, 27880600, 29742164, 34055980, 44722580
Offset: 1

Views

Author

Keywords

Comments

Bombieri's Napkin Problem: Bombieri said that "the equation C(x,n) + C(y,n) = C(z,n) has no trivial solutions for n >= 3" (the joke being that he said "trivial" rather than "nontrivial"!).
Also: tetrahedral numbers that are the sum of two other tetrahedral numbers. (For the indices of these terms, see A002311.) - Harvey P. Dale, Jul 25 2011

Examples

			C(10,3) + C(16,3) = C(17,3) = 680.
		

References

  • Van der Poorten, Notes on Fermat's Last Theorem, Wiley, p. 122.

Crossrefs

Programs

  • Haskell
    a034404 = a000292 . a002311  -- Reinhard Zumkeller, May 02 2014
  • Mathematica
    With[{tetras=Binomial[Range[700]+2,3]},Union[Select[Total/@Tuples[ tetras,2], MemberQ[tetras,#]&]]] (* Harvey P. Dale, Jul 25 2011 *)

Formula

a(n) = A000292(A002311(n)). - Reinhard Zumkeller, May 02 2014

Extensions

Offset corrected by Andrew Howroyd, Mar 23 2023
Showing 1-2 of 2 results.