A133459
Sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, 294, 306, 322, 328, 363, 392, 406, 411, 414, 423, 445, 480, 484, 531, 551, 556, 568, 576, 590, 601, 625, 676, 693, 727, 732, 744, 746, 766
Offset: 1
-
nn = 12; Take[Union@ Map[Total, Tuples[#^2 (# + 1)/2 &@ Range@ nn, 2]], # (# - 1)/2 &[nn - 1]] (* Michael De Vlieger, Apr 16 2016 *)
A034404
Values of C(n,3) which can be written as C(x,3) + C(y,3).
Original entry on oeis.org
20, 680, 29260, 34220, 70300, 221815, 227920, 287980, 467180, 908600, 2481115, 4278680, 12259940, 13813570, 15493204, 17861900, 19970444, 24672560, 25665020, 27880600, 29742164, 34055980, 44722580
Offset: 1
C(10,3) + C(16,3) = C(17,3) = 680.
- Van der Poorten, Notes on Fermat's Last Theorem, Wiley, p. 122.
-
a034404 = a000292 . a002311 -- Reinhard Zumkeller, May 02 2014
-
With[{tetras=Binomial[Range[700]+2,3]},Union[Select[Total/@Tuples[ tetras,2], MemberQ[tetras,#]&]]] (* Harvey P. Dale, Jul 25 2011 *)
A010330
Numbers k such that C(k,3) = C(x,3) + C(y,3) is solvable.
Original entry on oeis.org
6, 17, 57, 60, 76, 111, 112, 121, 142, 177, 247, 296, 420, 437, 454, 476, 494, 530, 537, 552, 564, 590, 646, 690, 704, 716, 742, 749, 755, 820, 870, 910, 920, 1100, 1160, 1222, 1243, 1430, 1436, 1446, 1452, 1647, 1710, 1740, 1788, 1870, 2172, 2185, 2222, 2258
Offset: 1
C(10,3) + C(16,3) = C(17,3) = 680, so 17 is a term.
- J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- Van der Poorten, Notes on Fermat's Last Theorem, Wiley, p. 122.
-
a010330 = (+ 2) . a002311 -- Reinhard Zumkeller, May 02 2014
-
f[n_]:=Reduce[1 < x <= y < n && n(n-1)(n-2) == x(x-1)(x-2) + y(y-1)(y-2), {x,y}, Integers]; Select[Range[2260], (f[#] =!= False)&] (* Jean-François Alcover, Mar 30 2011 *)
A136359
Perfect squares in A133459; or perfect squares that are the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
36, 81, 144, 289, 484, 576, 625, 676, 3600, 7396, 9801, 14400, 35344, 40000, 40804, 44100, 45796, 56644, 59049, 71824, 112896, 121104, 172225, 226576, 231361, 254016, 274576, 290521, 319225, 362404, 480249, 495616, 518400, 527076, 535824
Offset: 1
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = 36, a(2) = 81, a(3) = 144, a(4) = 289 that are the perfect squares in A133459.
-
N:= 200: # for terms up to N^2*(N+1)/2.
PP:= [seq(i^2*(i+1)/2, i=1..N)]:
PP2:= sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=i..N),i=1..N)},PP[-1]),list)):
select(issqr,PP2); # Robert Israel, Feb 04 2020
-
Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ]
A136360
Square roots of the perfect squares in A133459.
Original entry on oeis.org
6, 9, 12, 17, 22, 24, 25, 26, 60, 86, 99, 120, 188, 200, 202, 210, 214, 238, 243, 268, 336, 348, 415, 476, 481, 504, 524, 539, 565, 602, 693, 704, 720, 726, 732, 846, 899, 961, 965, 990, 1026, 1202, 1218, 1221, 1224, 1320, 1551, 1602, 1687, 1716, 1724, 1734
Offset: 1
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = sqrt(36) = 6, a(2) = sqrt(81) = 9, a(3) = sqrt(144) = 12, a(4) = sqrt(289) = 17 that are the square roots of the perfect squares in A133459.
-
Sqrt[ Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ] ]
A136361
Square roots of the perfect squares in A136360; or numbers k such that k^4 is in A133459 = the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
3, 5, 31, 132, 1068, 9672, 50664, 145060
Offset: 1
Showing 1-6 of 6 results.
Comments