cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002311 Numbers k such that the k-th tetrahedral number is the sum of 2 tetrahedral numbers.

Original entry on oeis.org

4, 15, 55, 58, 74, 109, 110, 119, 140, 175, 245, 294, 418, 435, 452, 474, 492, 528, 535, 550, 562, 588, 644, 688, 702, 714, 740, 747, 753, 818, 868, 908, 918, 1098, 1158, 1220, 1241, 1428, 1434, 1444, 1450, 1645, 1708, 1738, 1786, 1868, 2170, 2183, 2220, 2256
Offset: 1

Views

Author

Keywords

Comments

Indices of A034404. - Harvey P. Dale, Jul 25 2011

References

  • Aviezri S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a002311 n = a002311_list !! (n-1)
    a002311_list = filter f [1..] where
       f x = not $ null $ intersect txs $ map (tx -) $ txs where
           txs = takeWhile (< tx) a000292_list; tx = a000292 x
    -- Reinhard Zumkeller, May 02 2014
  • Mathematica
    With[{tetras=Binomial[Range[1100]+2,3]},Flatten[Position[tetras,#]&/@ Union[Select[Total/@Tuples[tetras,2],MemberQ[tetras,#]&]]]] (* Harvey P. Dale, Jul 26 2011 *)

Formula

a(n) = A010330(n) - 2. - Reinhard Zumkeller, May 02 2014

A010330 Numbers k such that C(k,3) = C(x,3) + C(y,3) is solvable.

Original entry on oeis.org

6, 17, 57, 60, 76, 111, 112, 121, 142, 177, 247, 296, 420, 437, 454, 476, 494, 530, 537, 552, 564, 590, 646, 690, 704, 716, 742, 749, 755, 820, 870, 910, 920, 1100, 1160, 1222, 1243, 1430, 1436, 1446, 1452, 1647, 1710, 1740, 1788, 1870, 2172, 2185, 2222, 2258
Offset: 1

Views

Author

Keywords

Comments

Bombieri's Napkin Problem: Bombieri said that "the equation C(x,n)+C(y,n)=C(z,n) has no trivial solutions for n >= 3" (the joke being that he said "trivial" rather than "nontrivial"!).

Examples

			C(10,3) + C(16,3) = C(17,3) = 680, so 17 is a term.
		

References

  • J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
  • Van der Poorten, Notes on Fermat's Last Theorem, Wiley, p. 122.

Crossrefs

Cf. A034404.
Cf. A000292.

Programs

  • Haskell
    a010330 = (+ 2) . a002311  -- Reinhard Zumkeller, May 02 2014
  • Mathematica
    f[n_]:=Reduce[1 < x <= y < n && n(n-1)(n-2) == x(x-1)(x-2) + y(y-1)(y-2), {x,y}, Integers]; Select[Range[2260], (f[#] =!= False)&] (* Jean-François Alcover, Mar 30 2011 *)

Formula

a(n) = A002311(n) + 2. - Reinhard Zumkeller, May 02 2014

Extensions

More terms from David W. Wilson

A102801 Let f(n) be the minimal number of distinct nonzero tetrahedral numbers that add to n (or -1 if n is not a sum of distinct tetrahedral numbers); sequence gives numbers n for which f(n) = 2.

Original entry on oeis.org

5, 11, 14, 21, 24, 30, 36, 39, 45, 55, 57, 60, 66, 76, 85, 88, 91, 94, 104, 119, 121, 124, 130, 140, 155, 166, 169, 175, 176, 185, 200, 204, 221, 224, 230, 240, 249, 255, 276, 285, 287, 290, 296, 304, 306, 321, 340, 342, 365, 368, 370, 374, 384
Offset: 1

Views

Author

Jud McCranie, Feb 26 2005

Keywords

Examples

			680 (of A034404) is a sum of two distinct positive tetrahedral numbers but not in the list because it is also a tetrahedral number itself. - _R. J. Mathar_, Jun 05 2025
		

Crossrefs

Cf. A000292, A104246, A102795, etc.
Showing 1-3 of 3 results.