cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010552 Multiply successively by 1 (once), 2 (twice), 3 (thrice), etc.

Original entry on oeis.org

1, 1, 2, 4, 12, 36, 108, 432, 1728, 6912, 27648, 138240, 691200, 3456000, 17280000, 86400000, 518400000, 3110400000, 18662400000, 111974400000, 671846400000, 4031078400000, 28217548800000, 197522841600000, 1382659891200000, 9678619238400000, 67750334668800000
Offset: 0

Views

Author

Keywords

Crossrefs

A002109 is a subsequence.
Cf. A002024.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          a(n-1) * floor(sqrt(2*n)+1/2))
        end:
    seq(a(n), n=0..30); # Alois P. Heinz, May 20 2013
  • Mathematica
    t = Table[n, {n, 9}, {n}] // Flatten; b[n_] := t[[n]]; a[0] = 1; a[n_] := a[n] = b[n] a[n-1]; Table[a[n], {n, 0, t // Length}] (* Jean-François Alcover, Feb 21 2016 *)
  • PARI
    lista(nn) = my(na = 1, i = 0, im = 1, list=List()); listput(list, na); while (i < nn, for (j=1, im, na *= im; listput(list, na); i++; ); im++; ); Vec(list); \\ Michel Marcus, May 20 2013; Jun 19 2025
    
  • Python
    from math import isqrt, comb, prod
    def A010552(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))**(n-comb(a,2))*prod(i**i for i in range(2,a)) # Chai Wah Wu, Jun 19 2025

Formula

a(0)=1, a(n) = a(n-1)*floor(sqrt(2*n)+1/2) for n>0. - Alois P. Heinz, May 20 2013