A010566 Number of 2n-step 2-dimensional closed self-avoiding paths on square lattice.
0, 8, 24, 112, 560, 2976, 16464, 94016, 549648, 3273040, 19781168, 121020960, 748039552, 4664263744, 29303071680, 185307690240, 1178635456752, 7535046744864, 48392012257184, 312061600211680, 2019822009608592, 13117263660884768, 85447982919036736
Offset: 1
References
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Felix A. Pahl, Table of n, a(n) for n = 1..55 (from Iwan Jensen's computations of A002931, using a(n)=4n*A002931(n))
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 364.
- A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice, J. Phys. A 21 (1988), L165-L172.
- Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- Iwan Jensen, Series Expansions for Self-Avoiding Walks
- G. S. Rushbrooke and J. Eve, On Noncrossing Lattice Polygons, Journal of Chemical Physics, 31 (1959), 1333-1334.
Crossrefs
Cf. A002931.
Programs
-
Mathematica
A002931 = Cases[Import["https://oeis.org/A002931/b002931.txt", "Table"], {, }][[All, 2]]; a[n_] := 4n A002931[[n]]; a /@ Range[55] (* Jean-François Alcover, Jan 11 2020 *)
-
Python
# Alex Nisnevich, Jul 22 2023 def num_continuations(path, dist): (x, y) = path[-1] next = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)] if dist == 1: return (0, 0) in next else: return sum(num_continuations(path + [c], dist - 1) for c in next if c not in path) def A010566(n): return 4 * num_continuations([(0, 0), (1, 0)], 2 * n - 1) if n >= 2 else 0
Comments