A010577 Number of n-step self-avoiding walks on 6-d cubic lattice.
1, 12, 132, 1452, 15852, 173172, 1887492, 20578452, 224138292, 2441606532, 26583605772, 289455960492, 3150796704012, 34298615880372, 373292253262692, 4062873240668412, 44214072776280252, 481167126859845852, 5235893033922430692, 56975931806991140292, 619957835069070600132, 6745858105534183489092
Offset: 0
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..24 [from Clisby link below]
- N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A8 for n<=24.
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
Extensions
More terms from R. J. Mathar, Aug 31 2007
Corrected a(15), Hugo Pfoertner, Aug 16 2014