cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159861 Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).

Original entry on oeis.org

1, 1, 1, 11, 1, 1, 1111, 6, 1, 1, 11111111, 58, 4, 1, 1, 1111111111111111, 5829, 38, 3, 1, 1, 11111111111111111111111111111111, 58292915, 3813, 29, 3, 1, 1, 1111111111111111111111111111111111111111111111111111111111111111, 5829291479146458, 38127938, 2833, 23, 2, 1, 1
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Examples

			A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
Square array A(m,n) begins:
  1,  1, 11, 1111, 11111111, 1111111111111111,  ...
  1,  1,  6,   58,     5829,         58292915,  ...
  1,  1,  4,   38,     3813,         38127938,  ...
  1,  1,  3,   29,     2833,         28323209,  ...
  1,  1,  3,   23,     2265,         22646453,  ...
  1,  1,  2,   19,     1870,         18698645,  ...
		

Crossrefs

Row m=2 gives: A156147.
Main diagonal gives: A159862.

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    seq(seq(A(m, d-m), m=1..d-1), d=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2023, after Maple code *)

A159862 Main diagonal of A159861.

Original entry on oeis.org

1, 1, 4, 29, 2265, 18698645, 1602308616574727, 14017675267522095175220940844027, 1245902734717669791621141496863001384336371908521990690157218737
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Comments

The length (number of decimal digits) of a(n) may be a power of 2 and often simply doubles, when n is increased by 1. But there are many exceptions: n = 11, 12, 13 give lengths 2^8, 3*2^7, 2^9, respectively. A factor of 3 is found in the lengths of a(n) for n = 12, 112..123, 1113..1234, 11123..12345, and so on. A factor of 7 is found for n = 1112, 11112..11122, and so on. 15 is factor of the length of a(11111112).

Crossrefs

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    a:= n-> A(n,n):
    seq(a(n), n=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    a[n_] := A[n, n];
    Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 13 2023, after Maple code *)

A004199 Table of [ x/y ], where (x,y) = (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),...

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 1, 4, 0, 0, 1, 2, 5, 0, 0, 0, 1, 2, 6, 0, 0, 0, 1, 1, 3, 7, 0, 0, 0, 0, 1, 2, 3, 8, 0, 0, 0, 0, 1, 1, 2, 4, 9, 0, 0, 0, 0, 0, 1, 1, 2, 4, 10, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 11, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 12, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 6, 13, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 14
Offset: 1

Views

Author

Keywords

Comments

Entry in row n and column k is also the number of multiples of k less than or equal to n, n,k >= 1. - L. Edson Jeffery, Aug 31 2014

Examples

			Array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  2, 1, 0, 0, 0, 0, 0, 0, ...
  3, 1, 1, 0, 0, 0, 0, 0, ...
  4, 2, 1, 1, 0, 0, 0, 0, ...
  5, 2, 1, 1, 1, 0, 0, 0, ...
  ...
		

Crossrefs

Cf. A002541 (antidiagonal sums).
Cf. A010766 (same sequence as triangle, omitting the zeros), A010783.

Programs

  • Mathematica
    (* Array version: *)
    Grid[Table[Floor[n/k], {n, 14}, {k, 14}]] (* L. Edson Jeffery, Aug 31 2014 *)
    (* Array antidiagonals flattened: *)
    Flatten[Table[Floor[(n - k + 1)/k], {n, 14}, {k, n}]] (* L. Edson Jeffery, Aug 31 2014 *)

Formula

Sum_{k=1..n} a(n-k+1,k) = A002541(n+1).
Showing 1-3 of 3 results.