A010814 Perimeters of integer-sided right triangles.
12, 24, 30, 36, 40, 48, 56, 60, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 168, 176, 180, 182, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 276, 280, 286, 288, 300, 306, 308, 312, 320, 324
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
- Ron Knott, Pythagorean Triples and Online Calculators.
- Index entries related to Pythagorean Triples.
Programs
-
Maple
isA010814 := proc(an) local a::integer,b::integer,c::integer ; for c from 1 to floor(an/2) do for a from floor(c/sqrt(2)) to c-1 do if issqr(c^2-a^2) then b := sqrt(c^2-a^2) ; if a+b+c = an then RETURN(true) ; fi ; fi ; od ; od : RETURN(false) ; end : for n from 3 to 400 do if isA010814(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
-
Mathematica
lst={};Do[Do[If[IntegerQ[c=Sqrt[a^2+b^2]],AppendTo[lst,a+b+c]],{b,a-1,Floor[Sqrt[a]],-1}],{a,4,4*5!}];Take[Union@lst,100] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *) q[n_] := EvenQ[n] && Module[{d = Divisors[n/2]}, AnyTrue[Range[3, Length[d]], d[[#]] < 2 * d[[#-1]] &]]; Select[Range[350], q] (* Amiram Eldar, Oct 19 2024 *)
-
PARI
select( {is_A010814(n)=n%2==0&&is_A005279(n\2)}, [1..333]) \\ M. F. Hasler, Mar 20 2025
Extensions
More terms from Ray Chandler, Mar 13 2004
Comments