cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A250973 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the sum of its diagonal elements less than the absolute difference of its antidiagonal elements.

Original entry on oeis.org

14, 49, 49, 172, 308, 172, 604, 1945, 1945, 604, 2121, 12281, 22048, 12281, 2121, 7448, 77537, 249921, 249921, 77537, 7448, 26154, 489543, 2833397, 5089900, 2833397, 489543, 26154, 91841, 3090834, 32124018, 103684186, 103684186, 32124018
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2014

Keywords

Comments

Table starts
....14.......49........172..........604............2121..............7448
....49......308.......1945........12281...........77537............489543
...172.....1945......22048.......249921.........2833397..........32124018
...604....12281.....249921......5089900.......103684186........2112130109
..2121....77537....2833397....103684186......3794909318......138900769559
..7448...489543...32124018...2112130109....138900769559.....9135168475316
.26154..3090834..364210219..43025963570...5084110136919...600808386292820
.91841.19514643.4129278507.876479703950.186091438754901.39514486757351514

Examples

			Some solutions for n=3 k=4
..0..0..0..0..1....0..0..0..1..1....0..1..0..0..0....0..0..0..1..0
..0..0..0..1..1....0..1..1..0..0....0..1..1..1..1....1..1..1..0..1
..1..1..1..0..1....1..1..0..1..1....0..1..0..0..0....1..1..0..1..0
..1..1..0..1..1....0..0..1..1..0....1..1..0..0..0....0..1..0..1..1
		

Crossrefs

Column 1 is A010904

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3)
k=2: a(n) = 8*a(n-1) -13*a(n-2) +17*a(n-3) -14*a(n-4) +3*a(n-5)
k=3: [order 9]
k=4: [order 17]
k=5: [order 31]
k=6: [order 57] for n>58

A277084 Pisot sequence L(4,14).

Original entry on oeis.org

4, 14, 49, 172, 604, 2122, 7456, 26198, 92052, 323444, 1136489, 3993295, 14031289, 49301911, 173232725, 608689936, 2138761243, 7514991434, 26405516950, 92781386582, 326007088306, 1145495077635, 4024940008834, 14142480741305, 49692606865991, 174605518105877
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

There is no simple g.f. - Ilya Gutkovskiy, May 23 2019

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 25}]

Formula

a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.

A278692 Pisot sequence T(4,14).

Original entry on oeis.org

4, 14, 49, 171, 596, 2077, 7238, 25223, 87897, 306303, 1067403, 3719680, 12962320, 45171020, 157411717, 548547468, 1911575138, 6661446313, 23213770727, 80895217952, 281903201529, 982374694626, 3423373822671, 11929753885009, 41572739387791, 144872448909191, 504850696923520, 1759300875378480
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)), A277084 (Pisot sequence L(4,14)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 27}]
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=4; v[2]=14; for(i=3,#v, v[i]=v[i-1]^2\v[i-2]); v \\ Charles R Greathouse IV, Nov 28 2016
    
  • Python
    from itertools import islice
    def A278692_gen(): # generator of terms
        a, b = 4, 14
        yield from (a,b)
        while True:
            a, b = b, b**2//a
            yield b
    A278692_list = list(islice(A278692_gen(),30)) # Chai Wah Wu, Dec 06 2023

Formula

a(n) = floor(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.
Conjectures: (Start)
G.f.: (4 - 2*x + x^2 - x^3)/(1 - 4*x + 2*x^2 - x^3 + x^4).
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4). (End)
Showing 1-3 of 3 results.