cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A018133 Powers of fifth root of 7 rounded to nearest integer.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 22, 33, 49, 72, 107, 157, 232, 343, 506, 747, 1102, 1627, 2401, 3543, 5229, 7717, 11389, 16807, 24803, 36604, 54019, 79720, 117649, 173623, 256229, 378135, 558042, 823543
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011092.

Programs

  • Mathematica
    Round[Surd[7,5]^Range[0,40]] (* Harvey P. Dale, Jul 27 2021 *)
  • Python
    from gmpy2 import iroot_rem
    def A018133(n):
        i, j = iroot_rem(7**n,5)
        return int(i)+int(j<<5>=10*i*((i*((i*(i+1)<<1)+1)<<2)+1)+1) # Chai Wah Wu, Jun 20 2024

A011183 Decimal expansion of 5th root of 98.

Original entry on oeis.org

2, 5, 0, 1, 7, 5, 7, 5, 2, 7, 1, 4, 0, 8, 4, 3, 5, 1, 3, 0, 8, 7, 2, 4, 4, 8, 5, 4, 9, 2, 6, 2, 9, 8, 3, 7, 2, 0, 6, 0, 4, 5, 7, 4, 7, 0, 6, 8, 0, 9, 7, 7, 9, 7, 9, 9, 3, 2, 6, 1, 3, 5, 7, 8, 6, 5, 1, 7, 1, 6, 3, 9, 7, 0, 0, 6, 1, 1, 8, 9, 9, 7, 4, 2, 2, 8, 0, 0, 7, 9, 8, 8, 3, 3, 3, 9, 8, 2, 7
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    RealDigits[Surd[98,5],10,120][[1]] (* Harvey P. Dale, Mar 06 2014 *)

Formula

Equals A005531*A011092^2 . - R. J. Mathar, Aug 27 2024

A018132 Powers of fifth root of 7 rounded down.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 15, 22, 33, 49, 72, 106, 157, 232, 343, 506, 747, 1102, 1626, 2401, 3543, 5229, 7717, 11388, 16807, 24803, 36604, 54019, 79720, 117649, 173623, 256228, 378135, 558041, 823543, 1215362, 1793599, 2646946, 3906292, 5764801, 8507538, 12555197, 18528622, 27344044, 40353607, 59552770
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011092.

Programs

A281143 Decimal expansion of 10!^(1/10).

Original entry on oeis.org

4, 5, 2, 8, 7, 2, 8, 6, 8, 8, 1, 1, 6, 7, 6, 4, 7, 6, 2, 2, 0, 3, 3, 0, 9, 3, 3, 7, 1, 9, 5, 5, 0, 8, 7, 9, 3, 4, 9, 8, 6, 3, 1, 6, 7, 6, 0, 8, 9, 3, 9, 0, 4, 6, 2, 8, 8, 6, 1, 1, 4, 7, 6, 0, 4, 6, 9, 2, 6, 2, 5, 5, 3, 8, 4, 5, 4, 1, 2, 8, 3, 9, 0, 7, 5, 1, 7, 7, 2, 4, 6, 5, 8, 2, 8, 8, 4, 9, 9, 4, 5, 8, 3, 1, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2017

Keywords

Comments

Base b such that log_b 10! = 10.
Inspired by the idea of utilizing the log scaled to 10! being 10, i.e., log_b 10! = 10, therefore b = 2^(4/5)*3^(2/5)*5^(1/5)*7^(1/10).

Examples

			4.52872868811676476220330933719550879349863167608939046288611476046926255...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^(4/5) 3^(2/5) 5^(1/5) 7^(1/10), 10, 111][[1]] (* or *)
    RealDigits[Solve[Log[b, 10!] == 10, b][[1, 1, 2]], 10, 105][[1]]

Formula

Showing 1-4 of 4 results.