cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184909 a(n) = n + floor(n*s/r) + floor(n*t/r), where r=2^(1/5), s=r^2, t=r^3.

Original entry on oeis.org

3, 6, 9, 13, 16, 19, 24, 27, 30, 34, 37, 40, 44, 48, 51, 55, 58, 61, 65, 68, 72, 76, 79, 82, 85, 89, 93, 96, 100, 103, 106, 110, 113, 117, 121, 124, 127, 131, 134, 137, 142, 145, 148, 152, 155, 158, 162, 166, 169, 172, 176, 179, 182, 187, 190, 193, 197, 200, 203, 207
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r = 2^(1/5); s = r^2; t = r^3;
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (* A184909 *)
    Table[b[n], {n, 1, 120}]  (* A184910 *)
    Table[c[n], {n, 1, 120}]  (* A184911 *)
    (* Clark Kimberling, Jan 18 2025 *)

Extensions

Definition in name corrected by Clark Kimberling, Jan 18 2025

A018135 Powers of fifth root of 8 rounded down.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 18, 27, 42, 64, 97, 147, 222, 337, 512, 776, 1176, 1782, 2702, 4096, 6208, 9410, 14263, 21618, 32768, 49667, 75281, 114104, 172950, 262144, 397336, 602248, 912838, 1383604, 2097152, 3178688, 4817990, 7302707, 11068834, 16777216, 25429504, 38543920, 58421659, 88550676, 134217728
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011093.

Programs

A018136 Powers of fifth root of 8 rounded to nearest integer.

Original entry on oeis.org

1, 2, 2, 3, 5, 8, 12, 18, 28, 42, 64, 97, 147, 223, 338, 512, 776, 1176, 1783, 2702, 4096, 6208, 9410, 14263, 21619, 32768, 49667, 75281, 114105, 172951, 262144, 397336, 602249, 912838, 1383604, 2097152
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011093.

Programs

  • Mathematica
    Round[(8^(1/5))^Range[0, 50]] (* Paolo Xausa, Jul 01 2024 *)
  • Python
    from gmpy2 import iroot_rem
    def A018136(n):
        i, j = iroot_rem(1<<3*n,5)
        return int(i)+int(j<<5>=10*i*((i*((i*(i+1)<<1)+1)<<2)+1)+1) # Chai Wah Wu, Jun 20 2024
Showing 1-3 of 3 results.