cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011186 Decimal expansion of 7th root of 4.

Original entry on oeis.org

1, 2, 1, 9, 0, 1, 3, 6, 5, 4, 2, 0, 4, 4, 7, 5, 4, 4, 0, 9, 1, 1, 6, 9, 1, 0, 0, 2, 5, 9, 2, 5, 6, 0, 8, 5, 7, 2, 7, 7, 4, 1, 1, 9, 3, 5, 8, 5, 9, 9, 6, 0, 8, 0, 6, 5, 9, 0, 9, 7, 1, 5, 1, 4, 8, 3, 2, 0, 6, 7, 2, 9, 5, 4, 5, 9, 6, 6, 7, 9, 9, 3, 8, 1, 7, 2, 5, 8, 1, 4, 0, 3, 1, 3, 7, 0, 5, 1, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A337840 a(n) is the decimal place of the start of the first occurrence of n in the decimal expansion of n^(1/n).

Original entry on oeis.org

0, 4, 10, 1, 38, 6, 9, 4, 12, 17, 26, 0, 264, 144, 107, 101, 101, 4, 78, 68, 36, 86, 11, 17, 147, 151, 205, 50, 55, 26, 307, 88, 94, 180, 177, 61, 113, 244, 280, 37, 110, 38, 285, 101, 124, 223, 243, 25, 86, 116, 66, 77, 146, 283, 3, 60, 20, 82, 27, 146, 82, 140
Offset: 1

Views

Author

William Phoenix Marcum, Sep 25 2020

Keywords

Comments

Does a(n) exist for all n? Some relatively large values: a(1021) = 67714, a(1111) = 64946. - Chai Wah Wu, Oct 07 2020

Examples

			For n = 1, 1^(1/1) = 1.0000000, so a(1) is 0.
For n = 12, 12^(1/12) ~= 1.2300755, so a(12) = 0.
		

Crossrefs

Cf. A177715.
Decimal expansions of some n^(1/n): A002193, A002581, A005534, A011215, A011231, A011247, A011263, A011279, A011295, A011311, A011327, A011343, A011359.

Programs

  • Mathematica
    max = 3000; a[n_] := SequencePosition[RealDigits[n^(1/n), 10, max][[1]], IntegerDigits[n]][[1, 1]] - 1; Array[a, 100] (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    a(n) = {if (n==1, 0, my(p=10000); default(realprecision, p+1); my(x = floor(10^p*n^(1/n)), d = digits(x), nb = #Str(n)); for(k=1, #d-nb+1, my(v=vector(nb, i, d[k+i-1])); if (fromdigits(v) == n, return(k-1));); error("not found"););} \\ Michel Marcus, Sep 30 2020
    
  • Python
    import gmpy2
    from gmpy2 import mpfr, digits, root
    gmpy2.get_context().precision=10**5
    def A337840(n): # increase precision if -1 is returned
        return digits(root(mpfr(n),n))[0].find(str(n)) # Chai Wah Wu, Oct 07 2020

Extensions

More terms from Amiram Eldar, Sep 25 2020

A375851 Decimal expansion of the 7th root of 306.

Original entry on oeis.org

2, 2, 6, 5, 1, 8, 1, 7, 8, 6, 2, 9, 5, 6, 9, 7, 7, 4, 7, 7, 4, 5, 6, 7, 2, 1, 3, 2, 6, 3, 2, 7, 2, 4, 1, 1, 8, 9, 2, 1, 3, 1, 4, 4, 8, 4, 8, 6, 9, 6, 9, 9, 9, 4, 6, 5, 3, 1, 6, 7, 0, 9, 0, 4, 8, 4, 1, 4, 2, 2, 7, 4, 2, 0, 5, 4, 9, 3, 4, 7, 5, 1, 5, 4, 9, 1, 2, 2, 2, 1, 6, 2, 1, 4, 8, 5, 4, 1, 8, 9
Offset: 1

Views

Author

Stefano Spezia, Sep 15 2024

Keywords

Comments

Calculated to 2800 digits by R. William Gosper in a 1976 contest where this task was the problem number 9.

Examples

			2.26518178629569774774567213263272411892131...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 151-152.

Crossrefs

Programs

  • Mathematica
    RealDigits[306^(1/7),10,100][[1]]
  • PARI
    sqrtn(306, 7) \\ Amiram Eldar, Sep 18 2024

Formula

Equals A010769*A011261*A011381. - R. J. Mathar, Sep 23 2024
Showing 1-3 of 3 results.